A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhang, C.

Paper Title Page
MOZBKI02 The BEPC II: Status and Early Commissioning 53
 
  • J. Q. Wang, L. Ma, C. Zhang
    IHEP Beijing, Beijing
 
  BEPCII is the upgrade project of Beijing Electron Positron Collider (BEPC). The installation of its storage ring components except the superconducting (SC) insertion magnets was completed in early November, 2006. While the improvement of the cryogenic system for SC magnets is in progress, the commissioning of the synchrotron radiation (SR) mode for the so called back-up scheme with conventional magnets adopted in the interaction region (IR), started on Nov. 13, 2006. The first electron beam was stored on Nov. 18 and later beam was provided to SR users for about 1 month starting from Dec. 25, 2006. The commissioning of the collision mode including the electron and positrion rings started in Feb. 2007. The first beam collision was realized on Mar. 25. Then optimization of the beam parameters was done. On May 14, a 100mA to 100mA beam collision was achieved with 20 bunches for each beam. The luminosity estimated from the measured beam-beam parameters has reached that of BEPC. From May 25 the machine turns to the second run of the SR mode. This paper provides an overview of the construction and introduce the commissioning results of the backup scheme of BEPCII.  
slides icon Slides  
TUPAN021 RFQ and IH Accelerators for the new EBIS Injector at BNL 1439
 
  • A. Schempp, U. Ratzinger, R. Tiede, C. Zhang
    IAP, Frankfurt am Main
  • J. G. Alessi, D. Raparia, L. Snydstrup
    BNL, Upton, Long Island, New York
 
  The new EBIS preinjector at BNL will accelerate ions from the EBIS source with specific mass to charge ratio of up to 6.25, from 17 keV/u to 2000 keV/u to inject into the Booster synchrotron, expanding experimental possibilities for RHIC and NASA experiments. The properties of the RFQ and IH accelerators and the status of the project will be discussed.  
THPAN022 Conceptual Studies of the EUROTRANS Front-End 3274
 
  • C. Zhang, M. Busch, H. Klein, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main
 
  Funding: Work supported by European Commission (contract number: FI6W-CT-2004-516520)

EUROTRANS (EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System) is calling for an efficient high-current CW front-end accelerator system. A combination of RFQ, normal conducting CH- (Crossbar H-mode) and super-conducting CH-DTL which aims to work at 352MHz and accelerate a 30mA proton beam to 17MeV has been studied as a promising candidate. The preliminary conceptual study results are reported with respect to beam dynamics design.