A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Woodley, M.

Paper Title Page
THPMN109 Status of the ILC Main Linac Lattice Design 2966
 
  • A. Valishev, N. Solyak
    Fermilab, Batavia, Illinois
  • M. Woodley
    SLAC, Menlo Park, California
 
  The report describes the present design of the ILC Main Linac lattice. The topics covered include basic element layout, optical functions, and issues centered around the linac following of the Earth's curvature. Also discussed are beam parameter measurements and instrumentation requirements.  
WEOCAB01 Design of the Beam Delivery System for the International Linear Collider 1985
 
  • A. Seryi, J. A. Amann, R. Arnold, F. Asiri, K. L.F. Bane, P. Bellomo, E. Doyle, A. F. Fasso, L. Keller, J. Kim, K. Ko, Z. Li, T. W. Markiewicz, T. V.M. Maruyama, K. C. Moffeit, S. Molloy, Y. Nosochkov, N. Phinney, T. O. Raubenheimer, S. Seletskiy, S. Smith, C. M. Spencer, P. Tenenbaum, D. R. Walz, G. R. White, M. Woodley, M. Woods, L. Xiao
    SLAC, Menlo Park, California
  • I. V. Agapov, G. A. Blair, S. T. Boogert, J. Carter
    Royal Holloway, University of London, Surrey
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun
    LAL, Orsay
  • M. Anerella, A. K. Jain, A. Marone, B. Parker
    BNL, Upton, Long Island, New York
  • D. A.-K. Angal-Kalinin, C. D. Beard, J.-L. Fernandez-Hernando, P. Goudket, F. Jackson, J. K. Jones, A. Kalinin, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • J. L. Baldy, D. Schulte
    CERN, Geneva
  • L. Bellantoni, A. I. Drozhdin, V. S. Kashikhin, V. Kuchler, T. Lackowski, N. V. Mokhov, N. Nakao, T. Peterson, M. C. Ross, S. I. Striganov, J. C. Tompkins, M. Wendt, X. Yang
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows, G. B. Christian, C. I. Clarke, A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • G. Burt, A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  • J. Carwardine, C. W. Saunders
    ANL, Argonne, Illinois
  • B. Constance, H. Dabiri Khah, C. Perry, C. Swinson
    JAI, Oxford
  • O. Delferriere, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • C. J. Densham, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Enomoto, S. Kuroda, T. Okugi, T. Sanami, Y. Suetsugu, T. Tauchi
    KEK, Ibaraki
  • A. Ferrari
    UU/ISV, Uppsala
  • J. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • W. Lohmann
    DESY Zeuthen, Zeuthen
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. M. Mattison
    UBC, Vancouver, B. C.
  • T. S. Sanuki
    University of Tokyo, Tokyo
  • V. I. Telnov
    BINP SB RAS, Novosibirsk
  • E. T. Torrence
    University of Oregon, Eugene, Oregon
  • D. Warner
    Colorado University at Boulder, Boulder, Colorado
  • N. K. Watson
    Birmingham University, Birmingham
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design.  
slides icon Slides  
THPMS060 Transport Optics Design and Multi-particle Tracking for the ILC Positron Source 3124
 
  • F. Zhou, Y. K. Batygin, Y. Nosochkov, J. Sheppard, M. Woodley
    SLAC, Menlo Park, California
  • W. Liu
    ANL, Argonne, Illinois
 
  Funding: U. S. DOE Contract DE-AC02-76SF00515

Undulator-based positron source is adopted as the International Linear Collider baseline design. Complete optics to transport the positron beam having large angular divergence and large energy spread from a thin Ti target to the entrance of the 5 GeV damping ring injection line is developed. Start-to-end multi-particle tracking through the beamline is performed including the optical matching device, capture accelerator system, transport system, superconducting booster linac, spin rotators, and energy compressor. Positron capture efficiency of different schemes (immersed vs shielded target, and flux concentrator vs quarter wave transformation for the optics matching system) is compared. For the scheme of a shielded target and quarter wave transformation, the simulation shows that 15.1% of the positrons from the target are captured within the damping ring 6-D acceptance at the entrance of the damping ring injection line.

 
THPMS061 Design of a High-current Injector and Transport Optics for the ILC Electron Source 3127
 
  • F. Zhou, Y. K. Batygin, A. Brachmann, J. E. Clendenin, R. H. Miller, J. Sheppard, M. Woodley
    SLAC, Menlo Park, California
 
  Funding: U. S. DOE Contract DE-AC02-76SF00515

A train of 2-nsμbunches are generated in the DC-gun based injector in the ILC e- source; a bunching system with extremely high bunching efficiency to compress bunch down to 20 ps FWHM is designed. Complete optics to transport the electron beam to the 5-GeV damping ring injection line is developed. Start-to-end multi-particle tracking through the beamline is performed including the bunching system, pre-acceleration, chicane, 5-GeV SC booster linac, spin rotators and energy compressor. It shows more than 95% of electrons from the DC-gun are captured within the 6-D damping ring acceptance at the entrance of damping ring injection line. The field and alignment errors, and orbit correction are analyzed.