A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wake, M.

Paper Title Page
MOPAN042 Switching Power Supply for Induction Accelerators 251
 
  • M. Wake, Y. Arakida, K. Koseki, Y. Shimosaki, K. Takayama, K. T. Torikai
    KEK, Ibaraki
  • W. Jiang, K. Nakahiro
    Nagaoka University of Technology, Nagaoka, Niigata
  • A. Sugiyama
    Shindengen Co., Ltd., Tokyo
  • A. Tokuchi
    Nichicon (Kusatsu) Corporation, Shiga
 
  A new particle acceleration method using pulsed induction cavities was introduced in the super-bunch project at KEK. Unlike conventional RF acceleration, this acceleration method separates functions of acceleration and confinement As a result, this acceleration method can be applied for accelerating a wide mass range of particles. However, it is necessary to give a very fast pulsed-excitation to the cavity to perform the induction acceleration. Switching power supplies of high voltage output with very fast pulse-operation is one of the most important key technologies for this new acceleration method. We have developed 20ns rise time pulse at continuous repetition rate of 1MHz using MOS-FET's. Induction cavities were modulated through the 200m long transmission lines. Further development using SI- thyristor achieved 1MHz and 2kV switching in a burst mode operation. SiC devices are also studied for the application and some promising results were obtained. Faster operation will make this new acceleration technology available for small accelerator projects.  
TUPAN046 A Modification Plan of the KEK 500MeV Booster to an All-ion Accelerators (An Injector-free Synchrotron) 1490
 
  • E. Nakamura, T. Adachi, Y. Arakida, T. Iwashita, M. Kawai, T. Kono, H. Sato, Y. Shimosaki, K. Takayama, M. Wake
    KEK, Ibaraki
  • T. S. Dixit
    GUAS/AS, Ibaraki
  • S. I. Inagaki
    Kyushu University
  • T. Kikuchi
    Utsunomiya University, Utsunomiya
  • K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
  • K. T. Torikai
    NIRS, Chiba-shi
 
  A medium-energy synchrotron capable of accelerating all ion species based on a novel technology of the induction synchrotron* has been proposed as an all-ion accelerator (AIA)**. The AIA without any specific injector employs a strong focusing lattice and induction acceleration, driven by novel switching power supplies. All ions, including cluster ions with any charge state, are accelerated in a single accelerator. A plan to modify the existing KEK 500 MeV Booster to the AIA is under consideration. Its key aspects, such as an ion-source, a low-field injection scheme and induction acceleration***, are described. Deep implant of moderate-energy heavy ions provided from the AIA into various materials may create a new alloy in bulk size. Energy deposition caused by the electro-excitation associated with passing of swift ions through the material is known to largely modify its structure. The similar irradiation on metal in a small physical space of less than a mm in diameter and in a short time period less than 100 nsec is known to create a particularly interesting warm dense-matter state. The AIA capable is a quite interesting device as a driver to explore these new paradigms.

* K. Takayama, et al., "Experimental Demonstration of the Induction Synchrotron", PAC07.** K. Takayama, et al., PCT/JP2006/308502 (2006).*** T. Dixit, et al., PAC07.

 
TUPAN050 Status of the Induction Acceleration System 1502
 
  • Y. Shimosaki, Y. Arakida, T. Iwashita, T. Kono, E. Nakamura, K. Takayama, M. Wake
    KEK, Ibaraki
  • T. S. Dixit
    GUAS/AS, Ibaraki
  • N. Nagura, K. Okazaki, K. Otsuka
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
  • K. T. Torikai
    NIRS, Chiba-shi
 
  Single proton bunch confined by the barrier voltage was accelerated by the induction step-voltage from 500 MeV to 6 GeV at the KEK-PS on March 2006*. We will present the status with the information about troubles and counter-measures for the induction acceleration system.

* K. Takayama, presented in PAC07.