A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Virostek, S. P.

Paper Title Page
MOPAS029 Progress on the Design and Fabrication of the MICE Spectrometer Solenoids 497
 
  • S. P. Virostek, M. A. Green, D. Li, M. S. Zisman
    LBNL, Berkeley, California
 
  Funding: This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. A five-coil, superconducting spectrometer solenoid magnet at each end of the cooling channel will provide a 4 T uniform field region for the scintillating fiber tracker within the magnet bore tubes. The tracker modules are used to measure the muon beam emittance as it enters and exits the cooling channel. The cold mass for the 400 mm warm bore magnet consists of two sections: a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field of the solenoid into the MICE cooling channel. The detailed design and analysis of the two spectrometer solenoids has been completed, and the fabrication of the magnets is in its final stages. The primary features of the spectrometer solenoid magnetic and mechanical designs are presented along with a summary of key fabrication issues and photos of the fabrication process.

 
MOPAS030 Progress on the Design of the Coupling Coils for Mice and Mucool 500
 
  • M. A. Green, S. P. Virostek
    LBNL, Berkeley, California
  • X. L. Guo, G. Han, L. Jia, L. K. Li, S. Y. Li, C. S. Liu, X. K. Liu, L. Wang, H. Wu, F. Y. Xu
    ICST, Harbin
 
  Funding: This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. The MICE RF and Coupling Coil Module comprises a superconducting solenoid mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises. The coil package that surrounds the RF cavities is to be mounted on the outside of a 1.4 m diameter vacuum vessel. The coupling coil confines the beam in the cavity module and, in particular, within the radius of the cavity beam windows. The two MICE coupling solenoids will be operated in series using a 300 A, 10 V power supply. The maximum longitudinal force that will be carried by the cold mass support system is 0.5 MN during the expected operating and failure modes of the experiment. The detailed design and analysis of the two coupling coils has been completed, and the fabrication of the magnets is under way. The primary magnetic and mechanical design features of the coils are presented along with a summary of key fabrication issues.

 
WEPMN118 Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ for the Accelerator Driven Neutron Source 2313
 
  • S. P. Virostek, M. D. Hoff, D. Li, J. W. Staples, R. P. Wells
    LBNL, Berkeley, California
 
  Funding: This work was supported by the U. S. Dept. of Energy under Contract No. DE-AC02-05CH11231 and by the Dept. of Homeland Security's Domestic Nuclear Detection Office under Award No. HSHQPB-05-X-00033.

A high-yield neutron source to screen sea-land cargo containers for shielded Special Nuclear Materials (SNM) has been designed at LBNL. The Accelerator-Driven Neutron Source (ADNS) utilizes the D(d,n)3He reaction to produce a forward directed neutron beam. Key components are a high-current radio-frequency quadrupole (RFQ) accelerator and a high-power neutron production target capable of delivering a neutron flux of >107 n/(cm2 s) at a distance of 2.5 m. The mechanical design and analysis of the four-module, bolt-together RFQ will be presented here. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mA deuteron beam to 6 MeV. At a 5% duty factor, the time-average d+ beam current on target is 1.5 mA. Each of the 1.27 m long RFQ modules will consist of four solid OFHC copper vanes. A specially designed 3-D O-ring will be used to provide vacuum sealing between both the vanes and the modules. RF connections are made by means of canted coil spring contacts. Quadrupole mode stabilization is obtained with a series of 60 water-cooled pi-mode rods. A set of 80 evenly spaced fixed slug tuners is used for final frequency adjustment and local field perturbation correction.

 
THPMN117 Design of a VHF-band RF Photoinjector with MegaHertz Beam Repetition Rate 2990
 
  • J. W. Staples, K. M. Baptiste, J. N. Corlett, S. Kwiatkowski, S. M. Lidia, J. Qiang, F. Sannibale, K. G. Sonnad, S. P. Virostek, R. P. Wells
    LBNL, Berkeley, California
 
  Funding: This work is supported by the Director, Office of Science, High Energy Physics, U. S. Dept. of Energy under Contract no. DE-AC02-05CH1121

New generation accelerator-based X-ray light sources require high quality beams with high average brightness. Normal conducting L- and S-band photoinjectors are limited in repetition rate and D-C (photo)injectors are limited in field strength at the cathode. We propose a low frequency normal-conducting cavity, operating at 50 to 100 MHz CW, to provide beam bunches at a rate of one MegaHertz or more. The photoinjector uses a re-entrant cavity structure, requiring less than 100 kW CW, with a peak wall power density less than 10 W/cm2. The cavity will support a vacuum down to 10 picoTorr, with a load-lock mechanism for easy replacement of photocathodes. The photocathode can be embedded in a magnetic field to provide correlations useful for flat beam generation. Beam dynamics simulations indicate that normalized emittances on the order of 1 mm-mrad are possible with gap voltage of 750 kV, with fields up to 20 MV/m at the photocathode, for 1 nanocoulomb charge per bunch after acceleration and emittance compensation. Long-bunch operation (10's of picosecond) is made possible by the low cavity frequency, permitting low bunch current at the 750 kV gap voltage.

 
TUPMN109 A High Repetition Rate VUV-Soft X-Ray FEL Concept 1167
 
  • J. N. Corlett, J. M. Byrd, W. M. Fawley, M. Gullans, D. Li, S. M. Lidia, H. A. Padmore, G. Penn, I. V. Pogorelov, J. Qiang, D. Robin, F. Sannibale, J. W. Staples, C. Steier, M. Venturini, S. P. Virostek, W. Wan, R. P. Wells, R. B. Wilcox, J. S. Wurtele, A. Zholents
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, High Energy Physics, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, and wavelength; utilization of harmonics to attain shorter wavelengths; and precise synchronization of the x-ray pulse with laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FELs, each producing high average brightness, tunable over the soft x-ray-VUV range, and each with individual performance characteristics determined by the configuration of the FEL SASE, enhanced-SASE (ESASE), seeded, self-seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands. FELs would be tailored to specific experimental needs, including production of ultrafast pulses even into the attosecond domain, and high temporal coherence (i.e. high resolving power) beams.