A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Venturini Delsolaro, W.

Paper Title Page
TUPAN090 Parametric Field Modelling for the LHC Main Magnets in Operating Conditions 1586
 
  • M. DiCastro, L. Bottura, L. Deniau, N. J. Sammut, S. Sanfilippo, D. Sernelius, W. Venturini Delsolaro
    CERN, Geneva
 
  The first injections and ramps in the LHC will require a prediction of the settings of the main ring powering circuits as well as the main correctors. For this reason we are developing a parametric model of the magnetic field generated by the LHC magnets that will provide the field dependence on current, ramp-rate, time, and history. The model of the field is fitted on magnetic field measurements performed during the acceptance tests in operating conditions before their installation in the machine. In this paper we summarise the different steps necessary to select the relevant data and identify the parameters: the data extraction, the cleaning and the validation of the measurements, and the fitting procedure that is used to obtain the parameters from the experimental results. The main result reported is a summary of the value of the parameters obtained with the above procedure, and describing the behaviour of the magnetic field in the LHC main superconducting magnets (i.e. arc, dispersion suppressors and matching sections).  
FROAC03 The Commissioning of the LHC Technical Systems 3801
 
  • R. I. Saban, R. Alemany-Fernandez, V. Baggiolini, A. Ballarino, E. Barbero-Soto, B. Bellesia, F. Bordry, D. Bozzini, M. P. Casas Lino, V. Chareyre, S. D. Claudet, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, M. Gruwe, V. Kain, G. Kirby, M. Koratzinos, R. J. Lauckner, S. L.N. Le Naour, K. H. Mess, F. Millet, V. Montabonnet, D. Nisbet, B. Perea-Solano, M. Pojer, R. Principe, S. Redaelli, A. Rijllart, F. Rodriguez-Mateos, R. Schmidt, L. Serio, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, W. Venturini Delsolaro, A. Vergara-Fernandez, A. P. Verweij, M. Zerlauth
    CERN, Geneva
  • SF. Feher, R. H. Flora, R. Rabehl
    Fermilab, Batavia, Illinois
 
  The LHC is an accelerator with unprecedented complexity; in addition, the energy stored in magnets and the beams exceeds other accelerators by one to two orders of magnitude. To avoid a plague of technical problems and ensure a safe machine start-up, the hardware commissioning phase was emphasized: the thorough commissioning of technical systems (vacuum, cryogenics, quench protection, power converters, electrical circuits, AC distribution, ventilation, demineralised water, injection system, beam dumping system, beam instrumentation, etc) is carried-out without beam. Activity started in June 2005 with the commissioning of individual systems, followed by operating a full sector of the machine as a whole. LHC architecture allows the commissioning of each of the eight sectors independently from the others, before the installation of other sectors is complete. Important effort went into the definition of the programme and the organization of the coordination in the field, as well as in the tools to record and analyze test results. This paper presents the experience with this approach, results from the commissioning of the first LHC sectors and gives an outlook for future activities.  
slides icon Slides