A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Vasserman, I.

Paper Title Page
TUPMN092 Phasing of Two Undulators with Different K Values at the Advanced Photon Source 1130
  • R. J. Dejus, I. Vasserman
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Two full-length 2.4-m-long undulators, with period lengths 2.3 cm and 2.7 cm, were recently installed in tandem in the 5.6-m-long straight on the storage ring in sector 14. One part of the user research program requires that both undulators be tuned to 12.0 keV and the x-ray intensity maximized. The total intensity is sensitive to the phasing between the undulators, so the distance between the devices must be optimized and the ends tuned appropriately. Because of the different period lengths, the gaps and K values of the undulators will be different: 10.6-mm gap and a K value of 1.17 for the shorter-period device and 15.7-mm gap and a K value of 0.93 for the longer-period device. A special shield was designed and installed between the devices to eliminate interference. Results of magnetic measurements, tuning, and computer simulations of the spectral performance are presented.

TUPMN100 LCLS Undulator Production 1148
  • E. Trakhtenberg, T. Barsz, P. K. Den Hartog, G. S. Lawrence, E. R. Moog, S. Sasaki, I. Vasserman, M. White
    ANL, Argonne, Illinois
  • T. Becker, S. Dufresne, W. Kummerle, R. Schuermann
    Metalex Manufacturing, Cincinnati, Ohio
  • G. Goldfarb, N. Lagonsky, S. Lagonsky, S. Sorsher
    Hi-Tech Manufacturing, Schiller Park, Illinois
  Funding: Work supported by the U. S. Dept. of Energy, under contract numbers DE-AC02-06CH11357 and DE AC03-76SF00515.

Design and construction of the undulators for the Linac Coherent Light Source (LCLS) is the responsibility of Argonne National Laboratory. A prototype undulator* was constructed in-house and was extensively tested. The device was tunable to well within the LCLS requirements and was stable over a period of several years. Experience constructing the prototype undulator led us to conclude that with appropriate engineering design and detailed assembly procedures, precision undulators can be constructed by qualified vendors without previous undulator-construction experience. Our detailed technological knowledge and experience were transferred to the successful bidders who have produced outstanding undulators. Our production concept for the 40 3.4 m long, fixed-gap, planar-hybrid undulators with a 30 mm period is presented. Manufacturing, quality assurance, and acceptance testing details are also presented.

*LCLS Prototype Undulator Report, Argonne National Laboratory Report ANL/APS/TB-48, January 2004, R. Dejus, Editor.