A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

van Drie, A.

Paper Title Page
THPMS086 Plasma Lens for US Based Super Neutrino Beam at Either FNAL or BNL 3184
  • A. Hershcovitch, M. Diwan, J. C. Gallardo, B. M. Johnson, H. G. Kirk, W.-T. Weng
    BNL, Upton, Long Island, New York
  • E. Garate, A. van Drie
    University of California IIrvine, Irvine, California
  • S. A. Kahn
    Muons, Inc, Batavia
  • N. Rostoker
    UCI, Irvine, California
  Funding: Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy

Plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. Some of the current flows through the target, while the rest is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. Plasma of this section is immersed in a solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulation of the second section alone yielded a 10% higher neutrino production than the horn system. Plasma lenses have additional advantages: larger axial currents, high signal purity: minimal neutrino background in anti-neutrino runs. Lens medium consists of plasma, consequently, particle absorption and scattering is negligible. Withstanding high mechanical and thermal stresses is not an issue. Results of capturing and focusing obtained for various plasma lens configurations will be presented.