A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Turchet, A.

Paper Title Page
TUPMN028 The New Photoinjector for the Fermi Project 974
  • G. D'Auria, D. Bacescu, L. Badano, F. Cianciosi, P. Craievich, M. B. Danailov, G. Penco, L. Rumiz, M. Trovo, A. Turchet
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  FERMI@ELETTRA is a single-pass FEL user facility covering the spectral range 100 10 nm. It will be located near the Italian third generation Synchrotron Light Source facility ELETTRA and will make use of the existing 1.0 GeV normal conducting Linac. To obtain the high beam brightness required by the project, the present Linac electron source will be substituted with a photocathode RF gun now under development in the framework of a collaboration between Sincrotrone Trieste (ST) and Particle Beam Physics Laboratory (PBPL) at UCLA. The new gun will use an improved design of the 1.6 cell accelerating structure already developed at PBPL, scaled to 2998 MHz. We expect that the new gun design will allow a beam brightness increase by a factor 3-4 over the older version of the device. Some technical choices of the new design, including the enhancement of the mode separation, removal of the RF tuners, full cell symmetrization to limit the dipole and quadrupole RF field as well as an improved solenoid yoke design for multipole field corrections, will be discussed.  
TUPMN029 Linac Upgrading Program for the Fermi Project : Status and Perspectives 977
  • G. D'Auria, D. Bacescu, L. Badano, C. Bontoiu, F. Cianciosi, P. Craievich, M. B. Danailov, S. Di Mitri, M. Ferianis, G. C. Pappas, G. Penco, A. Rohlev, A. Rubino, L. Rumiz, S. Spampinati, M. Trovo, A. Turchet, D. Wang
    ELETTRA, Basovizza, Trieste
  FERMI@ELETTRA is a soft X-ray forth generation light source under development at the ELETTRA laboratory. It will be based on the existing 1.0 GeV Linac, revised and upgraded to fulfil the stringent requirements expected from the machine. The overall time schedule of the project is very tight and ambitious, foreseeing to supply 10 nm photons to users within 2010. Here the machine upgrading program and the ongoing activities are presented and discussed.