A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tommasini, D.

Paper Title Page
MOPAN079 Assembly and Quality Control of the LHC Cryostats at CERN. Motivations, Means, Results and Lessons Learned 338
 
  • A. Poncet, P. Cruikshank, V. Parma, P. M. Strubin, J.-P. G. Tock, D. Tommasini
    CERN, Geneva
 
  In 2001 the project management decided to perform at CERN the final assembly of the LHC superconducting magnets,with cryostat parts and cold masses produced by European Industry in large series. This industrial-like production has required a very significant investment in tooling,production facilities,engineering and quality control efforts, in contractual partnership with a consortium of firms. This unusual endeavour of a limited lifetime represented more than 800'000 working hours spanning over four years,the work being done on a result oriented basis by the contractor. This paper presents the reasons for having insourced this project at CERN,describes the work breakdown structure,the production means and methods,the infrastructure specially developed,the tooling,logistics and quality control aspects of the work performed,and the results achieved, in analytical form. Finally the lessons learned are outlined.  
MOPAN086 Final Geometry of 1232 LHC Dipoles 359
 
  • E. Y. Wildner, M. Bajko, P. Bestmann, S. D. Fartoukh, J. B. Jeanneret, D. P. Missiaen, D. Tommasini
    CERN, Geneva
 
  The 15 m long main dipoles for the Large Hadron Collider are now being installed in their final positions in the accelerator tunnel. Geometric measurements of the magnets after many of the production steps from industry to the cryostating, after cold tests and after preparation of the magnets for installation, have been made, permitting careful control of the shape of the magnet, the positioning of the field correctors, and the final positioning in the tunnel. The result of the geometry control at the different production stages, from industry to CERN, using different kinds of control procedures and analysis, will be reported.  
FROAKI01 Magnet Acceptance and Allocation at the LHC Magnet Evaluation Board 3739
 
  • L. Bottura, P. Bestmann, N. Catalan-Lasheras, S. D. Fartoukh, S. S. Gilardoni, M. Giovannozzi, J. B. Jeanneret, M. Karppinen, A. M. Lombardi, K. H. Mess, D. P. Missiaen, M. Modena, R. Ostojic, Y. Papaphilippou, P. Pugnat, S. Ramberger, S. Sanfilippo, W. Scandale, F. Schmidt, N. Siegel, A. P. Siemko, D. Tommasini, T. Tortschanoff, E. Y. Wildner
    CERN, Geneva
 
  The normal- and superconducting magnets for the LHC ring have been carefully examined to insure that each of the more than 1800 assemblies is suitable for the operation in the accelerator. Magnet coordinators, hardware experts and accelerator physicists, joined in the LHC Magnet Evaluation Board, have contributed to this work that consists in the magnet acceptance, and the optimisation achieved by sorting magnets according to their geometry, field quality and quench level. This paper gives a description of the magnet approval mechanism that has been running since four years, reporting in a concise summary on the main results achieved. We take as specific indicators the computed mechanical aperture, the sorting efficiency with respect to systematic and random field errors in the magnets, and the case-by-case analysis necessary to accommodate hardware limitations such as quench limits and training.  
slides icon Slides