A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tiede, R.

Paper Title Page
TUPAN017 Development of a Coupled CH Structure for the GSI Proton Injector 1428
 
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
 
  Funding: CARE (contract No RIICT-2003-506-395), GSI, BMBF

The FAIR facility, under development at GSI, needs a new dedicated proton injector for the production of intense antiprotons secondary beams. This injector will accelerate protons from 3 to 70 MeV at a current of 70 mA, and due to the high voltage gain and shunt impedance will be based on CH cavities powered by a 2.5 MW, 325 MHz klystron. An innovative coupling cell containing one drift tube of length N-beta λ was developed to combine multicell drift tube modules of the CH-type (H210 mode).. In order to study this innovative coupling mechanism a scaled model of the second resonator of GSI Proton injector is under production at IAP. The according full scale prototype, 3 meter long coupled X MV resonator from MeV to MeV is under construction and will be power tested with a 2.5 MW klystron at GSI at the end of 2008. This paper describes in detail the coupled structure together with a general overview of the R&D results achieved on the CH-DTL's cavity.

 
TUPAN019 The Superconducting Linac Approach for IFMIF 1434
 
  • H. Podlech, M. Busch, H. Klein, H. Liebermann, U. Ratzinger, A. C. Sauer, R. Tiede
    IAP, Frankfurt am Main
 
  The International Fusion Material Irradiation Facility (IFMIF) which is under design will be a high flux source of fast neutrons for the development of new materials needed for future fusion reactors. IFMIF will deliver 250 mA of 40 MeV deuterons. The duty cycle is 100% and the beam power on the lithium target is 10 MW. The beam will be accelerated by two 175 MHz linacs in parallel operation. Beside the room temperature Alvarez solution an alternative design using superconducting CH-structures has been proposed. In this paper we present the superconducting approach for IFMIF with the emphasis on the beam dynamics simulations. The simulations have been performed using the LORASR code. A new space charge routing has been added to the code to increase the number of macro particles to more than 1 million. Additionally a new routine allows the simulation of randomly distributed RF and alignment errors. The optimized linac layout including error and loss studies will be presented.  
TUPAN021 RFQ and IH Accelerators for the new EBIS Injector at BNL 1439
 
  • A. Schempp, U. Ratzinger, R. Tiede, C. Zhang
    IAP, Frankfurt am Main
  • J. G. Alessi, D. Raparia, L. Snydstrup
    BNL, Upton, Long Island, New York
 
  The new EBIS preinjector at BNL will accelerate ions from the EBIS source with specific mass to charge ratio of up to 6.25, from 17 keV/u to 2000 keV/u to inject into the Booster synchrotron, expanding experimental possibilities for RHIC and NASA experiments. The properties of the RFQ and IH accelerators and the status of the project will be discussed.  
TUPAS102 End-to-End Simulation for the EBIS Preinjector 1874
 
  • D. Raparia, J. G. Alessi, A. Kponou, A. I. Pikin, J. Ritter
    BNL, Upton, Long Island, New York
  • S. Minaev, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U. S. Department of Energy. .

The EBIS (Electron Beam Ion Source) Project at Brookhaven National Laboratory is in the second year of a four-year project. It will replace the Tandem Van de Graaff accelerators with an EBIS, an RFQ, and one IH Linac cavity as the heavy ion preinjector for the Relativistic Heavy Ion Collider (RHIC), and for the NASA Space Radiation Laboratory (NSRL). The preinjector will provide all ions species, He to U, (Q/m>0.16) at 2 MeV/amu at a repetition rate of 5 Hz, pulse length of 10–40 μs, and intensities of ~2.0 mA. End-to-end simulations (from EBIS to the Booster injection) as well as error sensitivity studies will be presented and physics issues will be discussed.

#Raparia@bnl.gov