A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Thieberger, P.

Paper Title Page
TUXAB02 E-cloud experiments and cures at RHIC 759
  • W. Fischer, M. Blaskiewicz, J. M. Brennan, H.-C. Hseuh, H. Huang, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, J. Wei, S. Y. Zhang
    BNL, Upton, Long Island, New York
  • U. Iriso
    ALBA, Bellaterra (Cerdanyola del Valles)
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises – including pressure instabilities, a reduction of the stability threshold for bunches crossing the transition energy, and possibly slow emittance growth. We report on the main observations in operation and dedicated experiments, as well as the effect of various countermeasures including baking, NEG coated warm pipes, pre-pumped cold pipes, bunch patterns, scrubbing, and anti-grazing rings.

slides icon Slides  
THYC01 RHIC Hydrogen Jet Luminesence Monitor 2648
  • T. Russo, S. Bellavia, D. M. Gassner, P. Thieberger, D. Trbojevic, T. Tsang
    BNL, Upton, Long Island, New York
  Funding: US Department of Energy

A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper will describe the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

slides icon Slides  
TUPAS096 Setup and Performance of the RHIC Injector Accelerators for the 2007 Run with Gold Ions 1862
  • C. J. Gardner, L. Ahrens, J. G. Alessi, J. Benjamin, M. Blaskiewicz, J. M. Brennan, K. A. Brown, C. Carlson, W. Fischer, J. W. Glenn, M. Harvey, T. Hayes, H. Huang, G. J. Marr, J. Morris, F. C. Pilat, T. Roser, F. Severino, K. Smith, D. Steski, P. Thieberger, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the US Department of Energy.

Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS, and a new bunch merging scheme in AGS promise to provide beam bunches with reduced longitudinal emittance for RHIC.