A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Stockli, M. P.

Paper Title Page
TUPAS075 The New LEBT for the Spallation Neutron Source Power Upgrade Project 1823
 
  • B. Han, M. P. Stockli
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Beam envelope calculations show that a solenoid-drift-(singlet quad)-(sector dipole)-(singlet quad)-drift-solenoid LEBT allows for transporting 65-kV, high-current H- beams with smaller beam radii than the initially-explored (doublet quad)-drift-(double-focusing dipole)-drift-solenoid configuration. In addition, it appears that the new configuration is more robust because it allows for perfect matching of the final beam parameters for broad ranges of the parameters describing the lattice and the input beam. Such a LEBT with a dipole (switching-) magnet is required to assure meeting the 99% ion source availability requirement after upgrading the power of the Spallation Neutron Source. The SNS power upgrade will roughly double the neutron flux by increasing the proton beam energy from 1 to 1.3 GeV and by increasing the LINAC beam peak current from 38 to 59 mA. Because the RFQ losses increase with beam current and emittance, the RFQ input current needs to be increased from 41 to 67 mA if the normalized emittance can be maintained at 0.2 mm-mrad, or to 95 mA if the emittance increases to 0.35 mm-mrad.

 
MOPAS079 Spallation Neutron Source (SNS) High Pulse Repetition Rate Considerations 614
 
  • M. P. McCarthy, D. E. Anderson, I. E. Campisi, F. Casagrande, R. I. Cutler, G. W. Dodson, J. Galambos, D. P. Gurd, Y. W. Kang, K.-U. Kasemir, S.-H. Kim, H. Ma, B. W. Riemer, J. P. Schubert, M. P. Stockli
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Increasing the pulse repetition rate (PRR) of the SNS Linac to its designed maximum of 60 Hz to provide 1.4 MW of beam on target is in progress. Operation above 60 Hz in the future to provide beam to a second target is also being considered. Increasing the PRR to 80 Hz would allow the additional pulses to be diverted to a second target. This paper discusses the impact of increasing the PRR on the SNS infrastructure including Radio Frequency (RF) systems and structures, the ion source, cryogenics, controls and the target.

 
TUPAS074 Performance of the SNS Front End and Linac 1820
 
  • A. V. Aleksandrov, S. Assadi, W. Blokland, P. Chu, S. M. Cousineau, V. V. Danilov, C. Deibele, J. Galambos, S. Henderson, D.-O. Jeon, M. A. Plum, A. P. Shishlo, M. P. Stockli, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60 Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5 MeV beam from the Front End is accelerated to 86 MeV in the Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. With the completion of beam commissioning, the accelerator complex began operation in June 2006 and beam power is being gradually ramped up toward the design goal. Operational experience with the injector and linac will be presented including chopper performance, transverse emittance evolution along the linac, and the results of a beam loss study.

 
FROAAB02 Advanced RF-Driven H- Ion Sources at the SNS 3774
 
  • R. F. Welton, J. R. Carmichael, J. Carr, D. W. Crisp, R. H. Goulding, Y. W. Kang, N. P. Luciano, S. Murray, M. P. Stockli
    ORNL, Oak Ridge, Tennessee
 
  The power upgrade of the US Spallation Neutron Source* (SNS) will require substantially higher average H- beam current from the ion source than can be produced using the baseline source. H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 mm mrad, respectively, and a ~7% duty-factor will have to be injected into the accelerator. We are, therefore, investigating several advanced ion source concepts based on RF-excited plasmas. We have designed and tested three inductively coupled ion sources featuring external antennas. First, a simple prototype source was developed based on a ceramic plasma chamber and no magnetic plasma confinement. Next, a source featuring an internal Faraday shield with integrated magnetic multicusp plasma confinement was investigated as well as an ion source based on an AlN plasma chamber and external multicusp confinement field. H- generation in each source is quantified and compared. Also, experiments investigating the possibility of using helicon-wave coupling were performed and are reported. Finally, an advanced elemental Cs collar and feed system was developed and tested with each source.

ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725