A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Stadlmann, J.

Paper Title Page
TUPAN015 Ion Optical Layout of the FAIR Synchrotron and Beam Line Systems 1422
 
  • J. Stadlmann, K. Blasche, B. J. Franczak, F. Hagenbuck, C. Omet, N. Pyka, S. Ratschow, P. J. Spiller
    GSI, Darmstadt
  • A. D. Kovalenko
    JINR, Dubna, Moscow Region
 
  The ion-optical layout of the two main synchrotrons and the high energy beam transport system of the FAIR project is summarized. SIS100 will be used to generate high intensity beams of all ion species from protons to uranium with a maximum rigidity of 100 Tm. The ion optical layout is optimized for the operation with heavy ions of medium charge states. For this purpose we developed a new ion optical design which provides a separation of the ionized beam particles from the circulating beam in each lattice cell. The chosen lattice structure provides a peaked loss distribution and enables the suppression of beam loss induced pressure bumps. Furthermore a compact layout of the extraction systems for slow and fast extraction at 100 Tm and 300 Tm has been developed. Since both synchrotrons are situated in the same tunnel, the SIS300 ion optical layout has to match the geometrical shape of the SIS100 precisely - although both rings use different lattice structures. The design of the beam transport system allows an effective parallel operation of the two synchrotrons, storage rings and experiments of the FAIR complex.  
TUPAN014 Status of the FAIR SIS100/300 Synchrotron Design 1419
 
  • P. J. Spiller, U. B. Blell, H. Eickhoff, E. Fischer, E. Floch, P. Hulsmann, J. E. Kaugerts, M. Kauschke, H. Klingbeil, H. G. Koenig, A. Kraemer, D. Kramer, U. Laier, G. Moritz, C. Omet, N. Pyka, H. Ramakers, H. Reich-sprenger, M. Schwickert, J. Stadlmann
    GSI, Darmstadt
  • A. D. Kovalenko
    JINR, Dubna, Moscow Region
 
  The project status of the main accelerators, the SIS100 and SIS300 synchrotrons of the FAIR project will be presented. In order to accommodate more preferable technical solutions, the structure of the magnet lattice had to be modified in both machines. After these changes, more appropriate technical solutions for the main magnets and quench protection systems could be adapted. The general machine layout and design, e.g. of the demanding extraction schemes, has been detailed and open design issues were solved. The developments and design of all major technical systems are in progress and prototyping has started or is in preparation.