A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sopczak, A.

Paper Title Page
FRPMS074 Measurements of the Transverse Collimator Wakefields due to Varying Collimator Characteristics 4207
 
  • S. Molloy, S. Seletskiy, M. Woods
    SLAC, Menlo Park, California
  • C. D. Beard, J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. Bungau
    UMAN, Manchester
  • J. D.A. Smith
    Cockcroft Institute, Warrington, Cheshire
  • A. Sopczak
    Lancaster University, Lancaster
  • N. K. Watson
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Funding: EUROtev Contract #011899RIDS US DOE Contract DEAC02-76SF00515

We report on measurements of the transverse wakefields induced by collimators of differing characteristics. An apparatus allowing the insertion of different collimator jaws into the path of a beam was installed in End Station A (ESA) in SLAC. Eight comparable collimator geometries were designed, including one that would allow easy comparison with previous results, and were installed in this apparatus. Measurements of the beam kick due to the collimator wakefields were made with a beam energy of 28.5 GeV, and beam dimensions of ~100 microns vertically and a range of 0.5 to 1.5 mm longitudinally. The trajectory of the beam upstream and downstream of the collimator test apparatus was determined from the outputs of ten BPMs (four upstream and six downstream), thus allowing a measurement of the angular kick imparted to the beam by the collimator under test. The transverse wakefield was inferred from the measured kick. The different aperture designs, data collection and analysis, and initial comparison to theoretical and analytic predictions are presented here.

* "An Apparatus for the Direct Measurement of Collimator Transverse Wakefields", P. Tenenbaum, PAC '99** "Direct Measurement of the Resistive Wakefield in Tapered Collimators", P Tenenbaum, PAC '04