A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shu, Q. S.

Paper Title Page
WEPMS055 SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities 2469
 
  • Q. S. Shu, G. Cheng, I. M. Phipps, J. T. Susta
    AMAC, Newport News, Virginia
  • I. Ben-Zvi
    BNL, Upton, Long Island, New York
  • P. Kneisel, G. Myneni
    Jefferson Lab, Newport News, Virginia
  • J. Mast, R. Selim
    CNU, Newport News
 
  Funding: Acknowledgment: This work is supported by DOE grant DE-FG02-05ER84241

Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelarating fields.

 
WEPMS056 High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity 2472
 
  • Q. S. Shu, F. H. Lu, I. M. Phipps, J. L. Shi, J. T. Susta
    AMAC, Newport News, Virginia
  • R. P. Redwine, D. Wang, F. Wang
    MIT, Middleton, Massachusetts
 
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

There is an increasing demand for High beam Current, high Radio-Frequency (RF) power S-band cavities in existing and new accelerator projects to produce a very brilliant, broadband, teraherz coherent synchrotron radiation source (CRS). To achieve this goal, the RF cavities must be upgraded to a gap voltage of 1.5 MV in the limited space available in the machine with a high gradient superconducting cavity. At the present time there are no cavities and accessories designed to support the high beam currents of up to 100 mA and at the same time provide a high gap voltage at such a high S-band frequency. AMAC proposed a High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity with high RF Power Coupler and HOM absorber device. Comprehensive simulation and optimization to determine the SRF cavity parameters to meet the requirements, provided two alternate designs for the RF input couplers, performed a detailed Higher Order Modes (HOM) analysis, and proposed an HOM absorber concept to dampen the modes exited in the cavity due to the high beam current and high bunch intensity.

 
WEPMS057 Innovative Modular, Multiple Power Levels, 325 MHz Spokes Cavities Power Couplers 2475
 
  • Q. S. Shu, G. F. Chen, F. H. Lu, I. M. Phipps, J. T. Susta
    AMAC, Newport News, Virginia
  • T. N. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
 
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

In order to increase the protons energy up to 8 GeV in a driver Linac, the particles must be accelerated through various stages and three different power levels (25kW, 100kW and 210kW) are required for the 325 MHz Fermilab Proton Driver couplers. The problem identified by the project is that no High RF power coupler for these cavities has ever been produced using US industrial capabilities. AMAC proposed a novel resolution by development of innovative modular, multiple power levels, 325 MHz spoke cavities power couplers, which to meet three type cavities with one coupler design. The simulation and concept design are presented. The results of HFSS, MAFIA, ANSYS, and Multipacting are also discussed.