A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sharp, W. M.

Paper Title Page
THPAS050 Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing 3603
 
  • W. M. Sharp, R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • J. E. Coleman, P. K. Roy, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • I. Haber
    UMD, College Park, Maryland
 
  Funding: This work was performed under the auspices of US DOE by the University of California Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts W-7405-Eng-48 and DE-AC03-76SF00098.

Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.