A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schlabach, P.

Paper Title Page
MOPAS021 Slowly Rotating Coil System for AC Field Measurements of Fermilab Booster Correctors 476
 
  • G. Velev, J. DiMarco, D. J. Harding, V. S. Kashikhin, M. J. Lamm, P. Schlabach, M. Tartaglia, J. C. Tompkins
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy

A method for measurement of rapidly changing magnetic fields has been developed and applied to the testing of new room temperature corrector packages designed for the Fermilab Booster Synchrotron. The method is based on fast digitization of a slowly rotating tangential coil probe, with analysis combining the measured coil voltages across a set of successive magnet current cycles. This paper presents results on the field quality measured for normal and skew dipole, quadrupole, and sextupole magnets in several of these corrector packages.

 
MOPAS006 Design and Fabrication of a Multi-element Corrector Magnet for the Fermilab Booster Synchrotron 452
 
  • D. J. Harding, J. DiMarco, C. C. Drennan, V. S. Kashikhin, S. Kotelnikov, J. R. Lackey, A. V. Makarov, A. Makulski, R. Nehring, D. F. Orris, E. Prebys, P. Schlabach, G. Velev, D. G.C. Walbridge
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and installation at 48 locations is planned. The density of elements and the rapid slew rate have posed special challenges. The magnet construction is presented along with DC measurements of the magnetic field.

 
MOPAS023 Nb3Sn Accelerator Magnet Technology R&D at Fermilab 482
 
  • A. V. Zlobin, G. Ambrosio, N. Andreev, E. Barzi, R. Bossert, R. H. Carcagno, G. Chlachidze, J. DiMarco, SF. Feher, V. Kashikhin, V. S. Kashikhin, M. J. Lamm, A. Nobrega, I. Novitski, D. F. Orris, Y. M. Pischalnikov, P. Schlabach, C. Sylvester, M. Tartaglia, J. C. Tompkins, D. Turrioni, G. Velev, R. Yamada
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the U. S. Department of Energy

Accelerator magnets based on Nb3Sn superconductor advances magnet operation fields above 10T and increases the coil temperature margin. Development of a new accelerator magnet technology includes the demonstration of main magnet parameters (maximum field, quench performance, field quality, etc.) and their reproducibility using short models, and then the demonstration of technology scale up using long coils. Fermilab is working on the development of Nb3Sn accelerator magnets using shell-type dipole coils and react-and-wind method. As a part of the first phase of technology development Fermilab built and tested six 1-m long dipole models and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. Reproducibility of magnet field quality was demonstrated by all six short models. The technology scale up phase has started by building 2m and 4m dipole coils and testing them in a mirror configuration. This effort complements the Nb3Sn scale up work being performed in the framework of US LHC Accelerator Research Program (LARP). The status and main results of the Nb3Sn accelerator magnet development at Fermilab are reported.