A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Samokhvalova, K. R.

Paper Title Page
THPAS028 Warm-Fluid Equilibrium Theory of an Intense Charged-Particle Beam Propagating through a Periodic Solenodal Focusing Channel 3558
 
  • K. R. Samokhvalova, C. Chen, J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
 
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A warm-fluid theory of a thermal equilibrium for a rotating charged particle beam in a periodic solenoidal focusing magnetic field is presented. The warm-fluid equilibrium equations are solved in the paraxial approximation. It is shown that the flow velocity for the thermal equilibrium corresponds to periodic rigid rotation and radial pulsation. The equation of state for the thermal equilibrium is adiabatic. The beam envelope equation and self-consistent Poisson's equation are derived. The numerical algorithm for solving self-consistent Poisson's equation is discussed. Density profiles are calculated numerically for high-intensity beams. Temperature effects in such beams are investigated, and the validity of the warm-fluid theory is discussed. Examples of electron and ion beams are presented for space-charge-dominated beam and high energy density physics (HEDP) research.