A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ruggiero, A. G.

Paper Title Page
TUPAS104 Heavy Ion Driver with the Non-Scaling FFAG 1880
 
  • A. G. Ruggiero, J. G. Alessi, E. N. Beebe, A. I. Pikin, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York
 
  Funding: Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. ** Work supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231

We explore the possibility of using two non-scaling FFAG with a smaller number of distributed RF cavities for a high power heavy ion driver. The pulsed heavy ion source would consist of an Electron Beam Ion Source (EBIS), fed continuously from a high charge state Electron Cyclotron Resonance (ECR) source. The Radio Frequency Quadrupole (RFQ) and a short 10 MeV/u linac would follow the ion source. Microseconds long heavy ion beam bunches from the EBIS would be injected in a single turn into a multi-pass small aperture non-scaling Fixed Field Alternating Gradient (FFAG) accelerator. The heavy ion maximum kinetic energy is assumed to be 400 MeV/u with a total of 400 kW power for uranium ion beams. Partially stripped heavy ions would be accelerated from 10 MeV/u to 67 MeV/u with a first non-scaling FFAG, while, after further stripping, a second non-scaling FFAG would accelerate from 67 to 400 MeV/u.

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
THPMS083 The EMMA Lattice Design 3181
 
  • J. S. Berg, A. G. Ruggiero
    BNL, Upton, Long Island, New York
  • S. R. Koscielniak
    TRIUMF, Vancouver
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Funding: Work Supported by the United States Department of Energy, Contract No. DE-AC02-98CH10886.

EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). This paper describes the design of the EMMA lattice. We begin with a description of the experimental goals that impact the lattice design. We then describe what motivated the choice for the basic lattice parameters, such as the type of cells, the number of cells, and the RF frequency. We next list the different configurations that we wish to operate the machine in so as to accomplish our experimental goals. Finally, we enumerate the detailed lattice parameters, showing how these parameters result from the various lattice configurations.

 
THPMS094 Acceleration of Electrons with the Racetrack Non-Scaling FFAG for e-RHIC 3205
 
  • D. Trbojevic, I. Ben-Zvi, J. S. Berg, M. Blaskiewicz, V. Litvinenko, W. W. MacKay, V. Ptitsyn, T. Roser, A. G. Ruggiero
    BNL, Upton, Long Island, New York
 
  Funding: Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886

Acceleration of electrons up to 10 GeV for a future electron-ion collider eRHIC (Relativistic Heavy Ion Collider) could be performed with the energy recovery linac with multiple passes. An energy recovery scheme is required if a superconducting linac is used for acceleration. We report on an attempt to make a combination of a multi-pass linac with non-scaling Fixed Field Alternating Gradient (NS-FFAG) arcs. Two NS-FFAG arcs would allow electrons to pass through the same structure with different energies. The beam will be accelerated by the superconducting linac at the top of the sine function, and returned to the front of the linac by the non-scaling FFAG. This process is repeated until the total energy of 10 GeV is reached. After collisions the beam is brought back by the NS-FFAG and decelerated before being dumped.