A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ruelas, M.

Paper Title Page
THPMS018 High Average Current Betatrons for Industrial and Security Applications 3035
  • S. Boucher, R. B. Agustsson, P. Frigola, A. Y. Murokh, M. Ruelas
    RadiaBeam, Los Angeles, California
  • F. H. O'Shea, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  Funding: DOE Grant DE-FG02-04ER84051

The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. For industrial applications, high average currents at modest relativistic electron beam energies, typically in the 5 to 10 MeV range, are desired for medical product sterilization, food irradiation and materials processing. For security applications, high power x-rays in the 3 to 20 MeV range are needed for rapid screening of cargo containers and vehicles. In a FFAG betatron, high-power output is possible due to high duty factor and fast acceleration cycle: electrons are injected and accelerated in a quasi-CW mode while being confined and focused in the fixed-field alternating-gradient lattice. The beam is accelerated via magnetic induction from a betatron core made with modern low-loss magnetic materials. Here we present the design and status of a prototype FFAG betatron, called the Radiatron, as well as future prospects for these machines.

THPAS054 QUINDI - A Code to Simulate Coherent Emission from Bending Systems 3612
  • D. Schiller, S. Reiche, M. Ruelas
    UCLA, Los Angeles, California
  With this, we present a newly developed code, QUINDI, to address the numerical challenge of calculating the radiation spectra from electron bunches in bending magnet systems. This provides a better tool for designing diagnostic systems such as bunch length monitors in magnetic chicanes. The program calculates emission on a first principle basis, combining the dominant emission processes in a bending magnet system - edge and synchrotron radiation. The core algorithm is based on the Lienard-Wiechert potential and utilizes parallel computer architecture to cover complete electron beam distributions with a high resolution spatial grid. The program is aimed towards long frequency components to model the coherence level of the emitted radiation from the electron bunch.