A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rice, D. H.

Paper Title Page
MOOAKI01 Plans for Utilizing the Cornell Electron Storage Ring as a Test Accelerator for ILC Damping Ring Research and Development 42
  • M. A. Palmer, D. Sagan
    Cornell University, Department of Physics, Ithaca, New York
  • J. P. Alexander, D. L. Hartill, R. W. Helms, D. L. Rubin, J. P. Shanks, M. Tigner, J. T. Urban
    CLASSE, Ithaca
  • M. Ehrlichman
    University of Minnesota, Minneapolis, Minnesota
  • D. H. Rice
    CESR-LEPP, Ithaca, New York
  • L. Schachter
    Technion, Haifa
  Funding: Funding provided by NSF grant PHY-0202078

In April 2008, we propose to begin operation of the Cornell Electron Storage Ring (CESR) as a test accelerator, CesrTA, for International Linear Collider (ILC) damping ring research. Utilizing 12 damping wigglers, the baseline CesrTA lattice at 2.0 GeV will offer a natural geometric emittance of 2.25 nm. An experimental program has been laid out which focuses on several key areas of damping rings R&D. First we will test vacuum chamber designs to suppress electron cloud growth in the wiggler magnets. Secondly, we will develop correction, tuning and emittance monitoring strategies to achieve vertical emittances of a few picometers. As part of this effort we will validate alignment and survey techniques being developed by the Linear Collider Alignment and Survey group (LiCAS) for curved tunnel applications. After achieving ultra-low emittance, we intend to explore the impact of the electron cloud, the fast ion instability and other beam dynamics effects on ultra-low emittance beams. Finally, we plan to test various technical systems required for the ILC damping rings. This paper provides an update on conceptual design issues for CesrTA and describes the experimental program in detail.

slides icon Slides  
MOZBKI01 CESR-C: A Wiggler-Dominated Collider 48
  • D. H. Rice
    CESR-LEPP, Ithaca, New York
  Funding: Work supported by US National Science Foundation grant PHY-0202078

CESR-c operates with twelve 2.1 Tesla wigglers that account for 90% of the synchrotron radiation with beam energy in the range of 1.8 to 2.1 GeV. The wigglers reduce the radiation damping time from 0.5 seconds to 50 milliseconds. The carefully designed wigglers restrict neither physical nor dynamic aperture of the storage ring, though both quadrupole and sextupole distributions must be tailored to compensate the primary optics effects of the wigglers. Colliding beam performance limits are determined by the numerous parasitic beam-beam interactions in the single ring. Several approaches taken to mitigate these limiting effects are described herein. The CESR-c wigglers are an excellent match to the requirements for future damping rings. We describe how with flexible optics, extensive infrastructure, and resource expertise, they form an effective test bed for assessment and solution of damping ring issues such as electron cloud and ion effects, and achieving ultra-low emittance beams.

slides icon Slides