A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Reed, G.

Paper Title Page
THPMS026 The UCLA Helical Permanent-Magnet Inverse Free Electron Laser 3055
  • R. Tikhoplav, J. T. Frederico, G. Reed, J. B. Rosenzweig, S. Tochitsky, G. Travish
    UCLA, Los Angeles, California
  • G. Gatti
    INFN/LNF, Frascati (Roma)
  The Inverse Free Electron Laser (IFEL) is capable, in principle, of reaching accelerating gradients of up to 1 GV/m making it a prospective accelerator scheme for linear colliders. The Neptune IFEL at UCLA utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC and a CO2 laser with peak energy of up to 100 J, and will be able to accelerate electrons to 100 MeV over an 80 cm long, novel helical permanent-magnet undulator. Past IFELs have been limited in their average accelerating gradient due to the Gouy phase shift caused by tight focusing of the drive laser. Here, laser guiding is implemented via an innovative Open Iris-Loaded Waveguide Structure scheme which ensures that the laser mode size and wave front are conserved through the undulator. The results of the first phase of the experiment are discussed in this paper, including the design and construction of a short micro-bunching undulator, testing of the OILS waveguide, as well as the results of corresponding simulations.