A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ratti, A.

Paper Title Page
WEPMN116 Plans for Precision RF Controls for FERMI@ELETTRA 2310
 
  • L. R. Doolittle, J. M. Byrd, A. Ratti, J. W. Staples, R. B. Wilcox
    LBNL, Berkeley, California
  • G. D'Auria, M. Ferianis, M. M. Milloch, A. Rohlev
    ELETTRA, Basovizza, Trieste
  • M. W. Stettler
    CERN, Geneva
 
  FERMI@ELETTRA is a 4th generation light source under construction at Sincrotrone Trieste. It will be operated as a seeded FEL driven by a warm S-band linac presently serving as the injector for the ELETTRA storage ring. Operation as an FEL driver places much more stringent specifications on control of the amplititude and phase of the RF stations than in its present operation. This paper describes a conceptual design of an upgrade to the RF controls to achieve these specifications. The system consists of a stabilized distribution of the master oscillator signal providing a reference to local digital RF controllers . The RF reference distribution system takes advantage of recent breakthroughs in optical techniques where stabilized fiber lasers are used to provide a very accurate control of RF phases over long distances. The RF controller is based on recent improvements on modern digital systems, using a 14-bit high speed digitizer in combination with an FPGA and high speed DAC. This paper also presents experimental results of early tests performed as a feasibility study of the system.  
FRPMN067 Collision Rate Monitors for LHC 4171
 
  • E. Bravin, S. Burger, C. Dutriat, T. Lefevre, V. Talanov
    CERN, Geneva
  • A. Brambilla, M. Jolliot, S. Renet
    CEA, Grenoble
  • J. M. Byrd, K. Chow, H. S. Matis, M. T. Monroy, A. Ratti, W. C. Turner
    LBNL, Berkeley, California
 
  Collision rate monitors are essential in bringing particle beams into collision and optimizing the performances of a collider. In the case of LHC the relative luminosity will be monitored by measuring the flux of small angle neutral particles produced in the collisions. Due to the very different luminosity levels at the four interaction regions (IR) of LHC two different types of monitors have been developed. At the high luminosity IR (ATLAS and CMS) fast ionization chambers will be installed while at the other two (ALICE and LHC-b) solid state polycrystalline Cadmium Telluride (CdTe) detectors will be used. The ionization chambers are being developed by Lawrence Berkeley National Lab (Berkeley CA, USA) while the CdTe monitors are being developed by CERN and CEA-LETI (Grenoble, FR) This paper describes the system with particular emphasis on the monitors based on CdTe detectors, detailed description of the ionisation chambers being available in separate papers.