A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Prebys, E.

Paper Title Page
MOPAS016 New Corrector System for the Fermilab Booster 467
 
  • E. Prebys, C. C. Drennan, D. J. Harding, V. S. Kashikhin, J. R. Lackey, A. V. Makarov, W. Pellico
    Fermilab, Batavia, Illinois
 
  Funding: Work supported under DOE contract DE-AC02-76CH03000.

The Fermilab neutrino program places unprecedented demands on the lab's 8 GeV Booster synchrotron, which has not changed significantly since it was built almost 35 years ago. In particular, the existing corrector system is not adequate to control beam position and tune throughout the acceleration system, and provides limited compensation for higher order resonances. We present an ambitious ongoing project to build and install a set of 48 corrector packages, each containing horizontal and vertical dipoles, normal and skew quadrupoles, and normal and skew sextupoles. Space limitations in the machine have motivated a unique design, which utilizes custom wound coils around a 12 pole laminated core. Each of the 288 discrete multipole elements in the system will have a dedicated power supply, the output current of which is controlled by an individual programmable ramp. This provides for great flexibility in the system, but also presents a challenge in terms of designing the control hardware and software in such a way that the system can be operated in the most efficacious way.

 
MOPAS005 System Overview for the Multi-element Corrector Magnets and Controls for the Fermilab Booster 449
 
  • C. C. Drennan, M. Ball, A. R. Franck, D. J. Harding, P. A. Kasley, G. E. Krafczyk, M. J. Kucera, J. R. Lackey, D. McArthur, J. R. Misek, W. Pellico, E. Prebys, A. K. Triplett, D. Wolff
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy

To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and will be installation in 48 locations in the Booster accelerator. Each of these 288 corrector magnets will be individually powered. Each of the magnets will be individually controlled using operator programmed current ramps designed specifically for the each type of Booster acceleration cycle. This paper provides an overview of the corrector magnet installation in the accelerator enclosure, power and sensor interconnections, specifications for the switch-mode power supplies, rack and equipment layouts, controls and interlock electronics, and the features of the operator interface for programming the current ramps and adjusting the timing of the system triggers.

 
MOPAS006 Design and Fabrication of a Multi-element Corrector Magnet for the Fermilab Booster Synchrotron 452
 
  • D. J. Harding, J. DiMarco, C. C. Drennan, V. S. Kashikhin, S. Kotelnikov, J. R. Lackey, A. V. Makarov, A. Makulski, R. Nehring, D. F. Orris, E. Prebys, P. Schlabach, G. Velev, D. G.C. Walbridge
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and installation at 48 locations is planned. The density of elements and the rapid slew rate have posed special challenges. The magnet construction is presented along with DC measurements of the magnetic field.

 
TUPAS026 Operation and Performance of the New Fermilab Booster H- Injection System 1709
 
  • J. R. Lackey, F. G. Garcia, M. Popovic, E. Prebys
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

The operation and performance of the new, 15 Hz, H- charge exchange injection system for the FNAL Booster is described. The new system installed in 2006 was necessary to allow injection into the Booster at up to 15 Hz. It was built using radiation hardened materials which will allow the Booster to reliably meet the high intensity and repetition rate requirements of the Fermilab's HEP program. The new design uses three orbit bump magnets (Orbmps) rather than the usual four and permits injection into the Booster without a septum magnet. Injection beam line modification and compensation for the quadrupole gradients of the Orbmp magnets is discussed.