A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pozimski, J. K.

Paper Title Page
THPMN076 PAMELA - A Model for an FFAG based Hadron Therapy Machine 2880
 
  • J. K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • R. J. Barlow
    UMAN, Manchester
  • J. Cobb, T. Yokoi
    OXFORDphysics, Oxford, Oxon
  • B. Cywinski
    University of Leeds, Leeds
  • T. R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Elliott
    Beatson Institute for Cancer Research, Glasgow
  • M. Folkard, B. Vojnovic
    Gray Cancer Institute, Northwood, Middlesex
  • I. S.K. Gardner
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • B. Jones
    University Hospital Birmingham, Edgbaston, Birmingham
  • K. Kirkby, R. Webb
    UOSIBS, Guildford
  • G. McKenna
    University of Oxford, Oxford
  • K. J. Peach
    JAI, Oxford
  • M. W. Poole
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Approximately one third of the world?s 15000 accelerators are used for tumour therapy and other medical applications. Most of these are room temperature cyclotrons: a few are synchrotrons. Neither of these have ideal characteristics for a dedicated medical accelerator. The characteristics of FFAGs make them ideally suited to such applications, as the much smaller magnet size, greater compactness and variable energy offers considerable cost and operational benefits especially in a hospital setting. In the first stage the work on PAMELA will focus on the optimization of the FFAG design to deliver the specific machine parameters demanded by therapy applications. In this phase of the PAMELA project the effort will concentrate on the design of a semi-scaling type FFAGs to deliver a 450 MeV/u carbon ion beam, including detailed lattice and tracking studies. The second stage will use the existing expertise in the BASROC consortium to undertake a design of the magnets and RF system for PAMELA. An outline of the overall concept of PAMELA will be discussed and the actual status of the work will be presented.  
THPMN078 The CONFORM Project: Construction of a NonScaling FFAG and its Applications 2886
 
  • R. J. Barlow
    UMAN, Manchester
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • N. Marks, H. L. Owen, M. W. Poole
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • K. J. Peach
    JAI, Oxford
  • J. K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
 
  The CONFORM project, recently funded as part of the UK 'Basic Technology' initiative, will build a 20 MeV Non-Scaling FFAG (EMMA) at Daresbury. The experience gained will be used for the design of a proton machine (PAMELA) for medical research, and other applications for Non-Scaling FFAGs in different regimes will be explored. The successful development of this type of accelerator will provide many opportunities for increased exploitation, especially for hadron therapy for treatment of tumours, and the project provides a framework where machine builders will work with potential user communities to maximise the synergies and help this to happen successfully.  
TUPAN111 Status Report on the RAL Front End Test Stand 1634
 
  • J. K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • J. Alonso, R. Enparantza
    Fundacion Tekniker, Elbr (Guipuzkoa)
  • J. J. Back
    University of Warwick, Coventry
  • J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • Y. Cheng, S. Jolly, A. Kurup, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • M. A. Clarke-Gayther, A. Daly, D. C. Faircloth, A. P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • C. Gabor, D. C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Lucas
    Elytt Energy, Madrid
 
  High power proton accelerators (HPPAs) with beam powers in the several megawatt range have many applications including drivers for spallation neutron sources, neutrino factories, waste transmuters and tritium production facilities. The UK's commitment to the development of the next generation of HPPAs is demonstrated by a test stand being constructed in collaboration between RAL, Imperial College London and the University of Warwick. The aim of the RAL Front End Test Stand is to demonstrate that chopped low energy beams of high quality can be produced and is intended to allow generic experiments exploring a variety of operational regimes. This paper describes the status of the RAL Front End Test Stand which consists of five main components: a 60 mA H- ion source, a low energy beam transport, a 324 MHz Radio Frequency Quadrupole accelerator, a high speed beam chopper and a comprehensive suite of diagnostics. The aim is to demonstrate production of a 60 mA, 2 ms, 50 pps, chopped H- beam at 3 MeV.  
TUPAS002 RFQ Cold Model RF Measurements and Waveguide-to-Coaxial line Transition Design for the Front-End Test Stand at RAL 1655
 
  • Y. Cheng, A. Kurup, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • A. P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
  A 324MHz four vane RFQ cold model has been built, as part of the development of a proton driver front end test stand at the Rutherford Appleton Laboratory (RAL) in the UK. This paper will present the results of RF measurements performed on the cold model, which include analysis of resonant modes, Q-value measurements and electric field profile measurements using a bead-pull perturbation method. These measurements were done before and after brazing of the four vanes and the results were compared to Microwave Studio simulations. Additionally a tuner has been designed, built and tested and the results will be presented together with the electromagnetic design of waveguide-to-coaxial line transition structures for the four vane RFQ.