A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Poncet, A.

Paper Title Page
MOPAN079 Assembly and Quality Control of the LHC Cryostats at CERN. Motivations, Means, Results and Lessons Learned 338
 
  • A. Poncet, P. Cruikshank, V. Parma, P. M. Strubin, J.-P. G. Tock, D. Tommasini
    CERN, Geneva
 
  In 2001 the project management decided to perform at CERN the final assembly of the LHC superconducting magnets,with cryostat parts and cold masses produced by European Industry in large series. This industrial-like production has required a very significant investment in tooling,production facilities,engineering and quality control efforts, in contractual partnership with a consortium of firms. This unusual endeavour of a limited lifetime represented more than 800'000 working hours spanning over four years,the work being done on a result oriented basis by the contractor. This paper presents the reasons for having insourced this project at CERN,describes the work breakdown structure,the production means and methods,the infrastructure specially developed,the tooling,logistics and quality control aspects of the work performed,and the results achieved, in analytical form. Finally the lessons learned are outlined.  
MOPAN080 Modeling of Flexible Components for Asserting the Stability of Superconducting Magnets 341
 
  • A. Kumar, S. C. Bapna, S. Dutta, K. Swarna
    RRCAT, Indore (M. P.)
  • A. Poncet
    CERN, Geneva
 
  Funding: Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, INDIA European Organisation for Nuclear Research (CERN), Geneva, Switzerland

Superconducting magnets are subjected to various forces during their cool down and alignment. Their construction invariably includes bellows, gimbals, hoses and composite supports. A good estimate of the deformations arising out of the cool down and alignment operations is necessary as these induce relative displacements between the fiducialised external vessel and hidden cold mass of the magnet. The nonlinear and orthotropic behaviour of these elements may make the model complicated and if solved as a nonlinear problem, would entail a large solution time as the overall model size runs into million nodes. Authors developed a unified Finite Element Model of the LHC Short Straight Section and during this process many innovative modeling techniques evolved. The developed model uses isotropic material constitutive laws with linear material properties. The paper is presenting some of the salient features of these modeling techniques.