A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Peterson, T.

Paper Title Page
WEPMN106 Design and Commissioning of Fermilab's Vertical Test Stand for ILC SRF Cavities 2283
 
  • J. P. Ozelis, R. H. Carcagno, C. M. Ginsburg, Y. Huang, B. Norris, T. Peterson, V. Poloubotko, R. Rabehl, I. Rakhno, C. Reid, D. A. Sergatskov, C. Sylvester, M. Wong, C. Worel
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000

As part of a program to improve cavity performance reproducibility for the ILC, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using an existing cryoplant that can supply LHe in excess of 20g/sec and provides steady-state bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a 4.9m long vacuum vessel and 4.5m long LHe vessel. The cryostat is equipped with external and internal magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that radiation levels from heavily field-emitting cavities remain low. In the event that radiation levels exceed allowable limits, an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors disables RF power to the cavity. In anticipation of increased throughput requirements that may be met with additional test stand installations, sub-systems have been designed to be easily upgradeable or to already meet these anticipated needs. Detailed facility designs, performance during system commissioning, and results from initial cavity tests are presented.

 
WEOCAB01 Design of the Beam Delivery System for the International Linear Collider 1985
 
  • A. Seryi, J. A. Amann, R. Arnold, F. Asiri, K. L.F. Bane, P. Bellomo, E. Doyle, A. F. Fasso, L. Keller, J. Kim, K. Ko, Z. Li, T. W. Markiewicz, T. V.M. Maruyama, K. C. Moffeit, S. Molloy, Y. Nosochkov, N. Phinney, T. O. Raubenheimer, S. Seletskiy, S. Smith, C. M. Spencer, P. Tenenbaum, D. R. Walz, G. R. White, M. Woodley, M. Woods, L. Xiao
    SLAC, Menlo Park, California
  • I. V. Agapov, G. A. Blair, S. T. Boogert, J. Carter
    Royal Holloway, University of London, Surrey
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun
    LAL, Orsay
  • M. Anerella, A. K. Jain, A. Marone, B. Parker
    BNL, Upton, Long Island, New York
  • D. A.-K. Angal-Kalinin, C. D. Beard, J.-L. Fernandez-Hernando, P. Goudket, F. Jackson, J. K. Jones, A. Kalinin, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • J. L. Baldy, D. Schulte
    CERN, Geneva
  • L. Bellantoni, A. I. Drozhdin, V. S. Kashikhin, V. Kuchler, T. Lackowski, N. V. Mokhov, N. Nakao, T. Peterson, M. C. Ross, S. I. Striganov, J. C. Tompkins, M. Wendt, X. Yang
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows, G. B. Christian, C. I. Clarke, A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • G. Burt, A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  • J. Carwardine, C. W. Saunders
    ANL, Argonne, Illinois
  • B. Constance, H. Dabiri Khah, C. Perry, C. Swinson
    JAI, Oxford
  • O. Delferriere, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • C. J. Densham, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Enomoto, S. Kuroda, T. Okugi, T. Sanami, Y. Suetsugu, T. Tauchi
    KEK, Ibaraki
  • A. Ferrari
    UU/ISV, Uppsala
  • J. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • W. Lohmann
    DESY Zeuthen, Zeuthen
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. M. Mattison
    UBC, Vancouver, B. C.
  • T. S. Sanuki
    University of Tokyo, Tokyo
  • V. I. Telnov
    BINP SB RAS, Novosibirsk
  • E. T. Torrence
    University of Oregon, Eugene, Oregon
  • D. Warner
    Colorado University at Boulder, Boulder, Colorado
  • N. K. Watson
    Birmingham University, Birmingham
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design.  
slides icon Slides  
TUPAN024 HESR at FAIR: Status of Technical Planning 1442
 
  • R. Tolle, K. Bongardt, J. Dietrich, F. M. Esser, O. Felden, R. Greven, G. Hansen, F. Klehr, A. Lehrach, B. Lorentz, R. Maier, D. Prasuhn, A. Raccanelli, M. Schmitt, Y. Senichev, E. Senicheva, R. Stassen, H. Stockhorst
    FZJ, Julich
  • T. Bergmark, S. Johnson, T. Johnson, T. Lofnes, G. Norman, T. Peterson
    Uppsala University, Uppsala
  • B. Gålnander, D. Reistad
    TSL, Uppsala
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn
  • K. Rathsman
    UU/ISV, Uppsala
  • M. Steck
    GSI, Darmstadt
 
  The High-Energy Storage Ring (HESR) of the international Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is dedicated to Strong Interaction studies with antiprotons in the momentum range from 1.5 to 15 GeV/c. Powerful phase-space cooling is needed to reach demanding experimental requirements in terms of luminosity and beam quality. Status and details of technical planning including cryogenic concept will be presented.