A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pekeler, M.

Paper Title Page
TUPAN011 Beam Operation of the SARAF Light Ion Injector 1410
  • C. Piel, K. Dunkel, M. Pekeler, H. Vogel, P. vom Stein
    ACCEL, Bergisch Gladbach
  In beginning of 2007 the installation of the first stage of SARAF has been finalized. The system consists out of an ECR ion source, a low energy beam transport system, a four rod RFQ, a medium energy transport system and a superconducting module housing 6 half resonators and three superconducting solenoids. This injector will be characterized with a diagnostic plate. The installation allows continuous measurement of beam charge, position and phase. The diagnostic plate in addition provides a beam halo monitor, vertical and horizontal slit and wire systems, a slow and a fast faraday cup, which can only be used in pulsed operation. The paper will describe the status of commissioning, including results of the site acceptance test of major components.  
THOAKI01 Advances in Large Grain/Single Crystal SC Resonators at DESY 2569
  • W. Singer, A. Brinkmann, A. Ermakov, J. Iversen, G. Kreps, A. Matheisen, D. Proch, D. Reschke, X. Singer, M. Spiwek, H. Wen
    DESY, Hamburg
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • M. Pekeler
    ACCEL, Bergisch Gladbach
  The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specification already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.  
slides icon Slides