A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Paul, A.

Paper Title Page
TUYC02 High Gradient Induction Accelerator 857
 
  • G. J. Caporaso, D. T. Blackfield, Y.-J. Chen, J. R. Harris, S. A. Hawkins, L. Holmes, S. D. Nelson, A. Paul, B. R. Poole, M. A. Rhodes, S. Sampayan, M. Sanders, S. Sullivan, L. Wang, J. A. Watson
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  • C. Nunnally
    University of Missouri, Columbia, Columbia, Missouri
  • K. Selenes
    TPL, Albuquerque, NM
 
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Progress in the development of compact induction accelerators employing advanced vacuum insulators and dielectrics will be described. These machines will have average accelerating gradients at least an order of magnitude higher than existing machines and can be used for a variety of applications including flash x-ray radiography and medical treatments. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described.

 
slides icon Slides  
TUPAS057 Injector Particle Simulation and Beam Transport in a Compact Linear Proton Accelerator 1781
 
  • D. T. Blackfield, Y.-J. Chen, J. R. Harris, S. D. Nelson, A. Paul, B. R. Poole
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MV/m, is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector first generates a few nanosecond long and 40 pQ proton bunch, which is then compressed in the compression section at the end of the injector. Finally the bunch is accelerated in the high-gradient DWA accelerator to energy up to 70 - 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to determine the needed voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

 
TUPAS059 Compact Proton Accelerator for Cancer Therapy 1787
 
  • Y.-J. Chen, A. Paul
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U. S. Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

An investigation is being made into the feasibility of making a compact proton accelerator for medical radiation treatment. The accelerator is based on high gradient insulation (HGI) technology. The beam energy should be tunable between 70 and 250 MeV to allow the Bragg peak to address tumors at different depths in the patient. The desired radiation dose is consistent with a beam charge of 40 pico-coulombs. The particle source is a small 2 mm plasma device from which a several nano-second pulse can be extracted. The beam current is selectable by the potential of the extraction electrode and is adjustable in the range of 10-100 milli-Amperes. This beam is then accelerated and focused by the next three electrodes forming a Accel-Deaccel-Accel (ADA) structure leading to the DWA accelerator block. The spot size is adjustable over 2 to 10 mm. A transparent grid terminates the injector section and prevents the very high gradient of the HGI structure from influencing the overall focusing of the system. The beam energy is determined by the length of the DWA structure that is charged. This give independent selection of beam dose, size and energy.