A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Patterson, J. C.

Paper Title Page
MOPAS080 A Digital Ring Transverse Feedback Low-Level RF Control System 617
  • A. K. Polisetti, S. Assadi, C. Deibele, J. C. Patterson
    ORNL, Oak Ridge, Tennessee
  • R. C. McCrady
    LANL, Los Alamos, New Mexico
  • M. J. Schulte
    UW-Madison, Madison, Wisconsin
  A digital wide-band system for damping ring instabilities in an accelerator is presented. With increased beam intensity, the losses of an accumulator ring tend to increase due to the onset of various instabilities in the beam. An analog feedback damper system has been implemented at Los Alamos National Laboratory. This analog system, while functional, has certain limitations and a lack of programmability, which can be overcome by a digital solution. A digital feedback damper system is being designed through a collaborative effort by researchers at Oakridge National Laboratory, Los Alamos National Laboratory, and the University of Wisconsin. This system, which includes analog-to-digital converters, field programmable gate arrays and digital-to-analog converters can equalize errors inherent to analog systems, such as dispersion due to amplifiers/cables, gain mismatches, and timing adjustments. The digital system features programmable gains and delays, and programmable equalizers that are implemented using digital FIR and comb filters. The flexibility of the digital system allows it to be customized to implement different configurations and extended to address other diagnostic problems.