A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Nunes, R. P.

Paper Title Page
THPAN002 A Self-Consistent Model for Emittance Growth of Mismatched Charged Particle Beams in Linear Accelerators 3220
 
  • R. P. Nunes, R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
 
  Funding: CNPq, Brazil

The goal of this work is to analyze the envelope dynamics of magnetically focused and high-intensity charged particle beams. As known, beams with mismatched envelopes decay into its equilibrium state with a simultaneous increasing of emittance. This emittance growth implies that, in the stationary regime, the transverse phase-space of the beam is characterized by a tenuous population of hot particles around a dense population of cold particles. To describe this emittance growth, it was used the test-particle approach for the development of a simplified self-consistent macroscopic model, whose self-consistency is a result of the inclusion of the emittance growth into the envelope equation. The model is then compared with full N-particle beam simulations and the agreement is shown to be quite reasonable. The model revealed to be useful to understand the physical aspects of the problem and is computationally faster when compared with full simulations.

 
FRPMN008 Wave Breaking and Particle Jets in Inhomogeneous Beams 3886
 
  • R. P. Nunes, Y. Levin, R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
 
  Funding: CNPq, Brasil and AFOSR under grant FA9550-06-1-0345.

We analyze the dynamics of inhomogeneous, magnetically focused high-intensity beams of charged particles. While for homogeneous beams the whole system oscillates with a single frequency, any inhomogeneity leads to propagating transverse density waves which eventually result in a singular density build up, causing wave breaking and jet formation. The theory presented in this paper allows to analytically calculate the time at which the wave breaking takes place. It also gives a good estimate of the time necessary for the beam to relax into the final stationary state consisting of a cold core surrounded by a halo of highly energetic particles.