A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Norris, B.

Paper Title Page
WEPMN106 Design and Commissioning of Fermilab's Vertical Test Stand for ILC SRF Cavities 2283
  • J. P. Ozelis, R. H. Carcagno, C. M. Ginsburg, Y. Huang, B. Norris, T. Peterson, V. Poloubotko, R. Rabehl, I. Rakhno, C. Reid, D. A. Sergatskov, C. Sylvester, M. Wong, C. Worel
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000

As part of a program to improve cavity performance reproducibility for the ILC, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using an existing cryoplant that can supply LHe in excess of 20g/sec and provides steady-state bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a 4.9m long vacuum vessel and 4.5m long LHe vessel. The cryostat is equipped with external and internal magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that radiation levels from heavily field-emitting cavities remain low. In the event that radiation levels exceed allowable limits, an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors disables RF power to the cavity. In anticipation of increased throughput requirements that may be met with additional test stand installations, sub-systems have been designed to be easily upgradeable or to already meet these anticipated needs. Detailed facility designs, performance during system commissioning, and results from initial cavity tests are presented.

THPAS019 A Beam Dynamics Application Based on the Common Component Architecture 3552
  • D. R. Dechow, D. T. Abell, P. Stoltz
    Tech-X, Boulder, Colorado
  • J. F. Amundson
    Fermilab, Batavia, Illinois
  • L. Curfman McInnes, B. Norris
    ANL, Argonne, Illinois
  Funding: Department of Engergy, Office of Advanced Scientific Computing Research, SBIR grant: DE-FG02-06ER84520

A component-based beam dynamics application for modeling collective effects in particle accelerators has been developed. The Common Component Architecture (CCA) software infrastructure was used to compose a new Python-steered accelerator simulation from a set of services provided by two separate beam dynamics packages (Synergia and MaryLie/Impact) and two high-performance computer science packages (PETSc and FFTW). The development of the proof-of-concept application was accomplished via the following tasks:

  1. addressing multilanguage interoperability in the MaryLie/Impact code with Babel;
  2. creating components by making the selected software objects adhere to the Common Component Architecture protocol;
  3. assemblying the components with a newly developed, Component Builder gui; and
  4. characterizing the performance of the space charge (Poisson) solver that was originally used in Synergia 1.0 versus the PETSc-based space charge solver that has been developed for Synergia2.
The resulting beam dynamics application will allow the Synergia2 framework to evolve simultaneously with the modeling and simulation requirements of the International Linear Collider.