A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Muratori, B. D.

Paper Title Page
TUPMN083 Electron Beam Dynamics in 4GLS 1103
  • P. H. Williams, B. D. Muratori, H. L. Owen, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. J. Hirst
    STFC/RAL, Chilton, Didcot, Oxon
  Funding: Some of the work reported in this paper is supported by the EuroFEL programme.

Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.

FRPMN023 New Beam Diagnostic Developments at the Photo-Injector Test Facility PITZ 3967
  • S. Khodyachykh, G. Asova, J. W. Baehr, C. H. Boulware, H.-J. Grabosch, M. Hanel, S. A. Korepanov, M. Krasilnikov, S. Lederer, A. Oppelt, B. Petrosyan, S. Rimjaem, J. Roensch, T. A. Scholz, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • D. Alesini, L. Ficcadenti
    INFN/LNF, Frascati (Roma)
  • T. Garvey
    LAL, Orsay
  • L. H. Hakobyan
    YerPhI, Yerevan
  • D. J. Holder, B. D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Richter
    BESSY GmbH, Berlin
  • R. Spesyvtsev
    KhNU, Kharkov
  Funding: This work has partly been supported by the European Community, contracts RII3-CT-2004-506008 and 011935, and by the "Impuls- und Vernetzungsfonds" of the Helmholtz Association, contract VH-FZ-005.

The Photo-Injector Test Facility at DESY in Zeuthen (PITZ) is an electron accelerator which was built to develop and optimize high brightness electron sources suitable for SASE FEL operation. Currently, in parallel to the operation of the existing setup, a large extension of the facility and its research program is ongoing. The beam line which has a present length of about 13 meters will be extended up to about 21 meters within the next two years. Many additional diagnostics components will be added to the present layout. Two high-energy dispersive arms, an RF deflecting cavity and a phase space tomography module will extend the existing diagnostic system of the photo injector and will contribute to the full characterization of new electron sources. We will report on the latest developments of the beam diagnostics at PITZ.