A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Meddahi, M.

Paper Title Page
TUOAKI02 CERN Neutrinos to Gran Sasso (CNGS): Results from Commissioning 692
 
  • M. Meddahi, K. Cornelis, K. Elsener, E. Gschwendtner, W. Herr, V. Kain, M. Lamont, J. Wenninger
    CERN, Geneva
 
  The CNGS project (CERN Neutrinos to Gran Sasso) aims at directly detecting muon neutrinos-tau neutrinos oscillations. An intense muon- neutrinos beam is generated at CERN and directed towards LNGS (Laboratori Nazionali del Gran Sasso) in Italy where tau-neutrinos will be detected in large and complex detectors. An overview of the CNGS beam facility is given. Results from the primary and secondary beam line commissioning performed in summer 2006 are presented. Measurements are compared with expectations.  
slides icon Slides  
TUPAN095 Design and Performance of the CNGS Secondary Beam Line 1601
 
  • E. Gschwendtner, L. Bruno, K. Elsener, A. Ferrari, M. Meddahi, A. Pardons, S. Rangod
    CERN, Geneva
  • A. Guglielmi
    INFN/LNL, Legnaro, Padova
  • P. R. Sala
    INFN-Milano, Milano
 
  An intense muon-neutrino beam (1017 nu-mu/day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. The muon-neutrinos are produced in association with muons in the decay of the pions and kaons created in the target. In the presently approved physics programme, it is foreseen to run the CNGS facility with 4.5 · 1019 protons/year for five years. During a CNGS cycle, i.e. every 6s, two nominal SPS extractions of 2.4 ·1013 protons each at 400GeV/c are sent down the proton beam line to the target. The CNGS secondary beam line, starting with the target, has to cope with this situation, which pushes the beam line equipment and instrumentation to the limits of radiation hardness, mechanical stresses, etc. during the CNGS operation. An overview of the CNGS secondary beam line will be shown. Emphasis will be on the target, the magnetic focusing lenses (horn and reflector) and the muon monitors. The performance of the secondary beam line during beam commissioning and physics operation will be discussed and measurements compared with simulations.  
TUPAN096 High Intensity Commissioning of the SPS LSS4 Extraction for CNGS 1604
 
  • V. Kain, E. Carlier, E. H.R. Gaxiola, B. Goddard, M. Gourber-Pace, E. Gschwendtner, M. Meddahi, H. Vincke, H. Vincke, J. Wenninger
    CERN, Geneva
 
  The fast extraction in SPS LSS4 serves both the anti-clockwise ring of the LHC and the CERN Gran Sasso Neutrino facility (CNGS). The latter requires 2 fast extractions of 10.5 microsecond long batches per cycle, 50 milliseconds apart. Each batch will consist of 2.4·10+13 protons at 400 GeV, a factor of 10 in energy density above the equipment damage limit in case of beam loss. Active and passive protection systems are in place to guarantee safe operation and to respect the radiation limits close to the extraction region. In summer 2006 CNGS was commissioned including extraction with high intensity. A thorough setting-up of the extraction was performed as part of the CNGS commissioning, including aperture and beam loss measurements, and defining and checking of interlock thresholds for the extraction trajectory, magnet currents, kicker voltage and beam loss monitors. The various systems and the associated risks are discussed, the commissioning results are summarised and a comparison is made with predictions from simulations.