A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

McKee, B. D.

Paper Title Page
WEPMS017 High-Power Coupler Component Test Stand Status and Results 2367
 
  • B. Rusnak
    LLNL, Livermore, California
  • C. Adolphsen, G. B. Bowden, L. Ge, R. K. Jobe, Z. Li, B. D. McKee, C. D. Nantista, J. Tice, F. Wang
    SLAC, Menlo Park, California
  • R. Swent
    Stanford University, Stanford, Califormia
 
  Funding: This work was performed under the auspices of the U. S. DOE by the University of California, LLNL under Contract No. W-7405-Eng-48. SLAC Work supported under Contract No. W-7405-Eng-48.

Fundamental power couplers for superconducting accelerator applications like the ILC are complicated RF transmission line assemblies due to their having to simultaneously accommodate demanding RF power, cryogenic, and cleanliness constraints. When these couplers are RF conditioned, the observed response is an aggregate of all the parts of the coupler and the specific features that dominate the conditioning response are unknown. To better understand and characterize RF conditioning phenomena toward improving performance and reducing conditioning time, a high-power coupler component test stand has been built at SLAC. Operating at 1.3 GHz, this test stand was designed to measure the conditioning behavior of select components of the TTFIII coupler independently, including outer-conductor bellows, diameter changes, copper plating and surface preparations, and cold window geometries and coatings. A description of the test stand, the measurement approach, and a summary of the results obtained are presented.

 
WEPMS043 An RF Waveguide Distribution System for the ILC Test Accelerator at NML 2442
 
  • C. D. Nantista, C. Adolphsen, G. B. Bowden, B. D. McKee, R. Swent
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515.

An ILC R&D facility is being constructed in the NML building at Fermilab which, in addition to an injector and beam dump with spectrometer, will contain up to three cryomodules worth of ILC-type superconducting 9-cell cavities, 24 in all. This linac will be powered by a single klystron. As part of SLAC?s contribution to this project, we will provide a distribution network in WR650 waveguide to the various cavity couplers. In addition to commercial waveguide components and circulators and loads developed for TESLA, this sytem will include adjustable tap-offs, and customized hybrids. In one configuration, the circulators will be removed to test pair-wise cancellation of cavity reflections through hybrids. The system will be pressurized with nitrogen to 3 bar absolute to avoid the need for SF6 at windows or circulator. The full distribution for the first cryomodule will be delivered and installed later this year. We describe the design of the system and completed RF testing.