A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Masuda, A.

Paper Title Page
TUPMN049 Improvement of Soft X-ray Generation System Based on Laser Compton Scattering 1031
 
  • T. Gowa, Y. Kamiya, A. Masuda, R. Moriyama, K. Sakaue, M. Washio
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K. U. Ushida
    RIKEN, Saitama
 
  Funding: This work is supported by MECSST High Tech Research Center Project No. 707 and JSPS (B) (2) 18340079.

At Waseda University, we have succeeded in generating soft X-rays based on laser Compton scattering. The energies are within "Water Window" part (250~500eV) where the X-ray absorption coefficient of water is much less than that of constituent elements of living body such as carbon, hydrogen and nitrogen. For this reason, it is expected to apply to a bio-microscope with which we can observe living cells without dehydration. To improve the generation system, we remodeled our collision chamber and adopted 3-pass flash lamp amplifier system. With these modifications, we achieved high S/N ratio. The photon number detected by MCP was 278/pulse, tenfold increase of that in last year. Moreover, we succeeded in generating soft X-rays stably for more than 10 hours. Now we are planning to measure two-dimensional distribution of the X-rays by CCD. In this conference, experimental results and future plans will be reported.

 
TUPMN051 Development of Photocathode RF Gun and Laser System for Multi-collision Laser Compton Scattering 1037
 
  • R. Kuroda, M. K. Koike, H. Ogawa, N. Sei, H. Toyokawa, K. Y. Yamada, M. Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  • T. Gowa, Y. Kamiya, A. Masuda, R. Moriyama, K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • T. Nakajyo, F. Sakai, T. Y. Yanagida
    SHI, Tokyo
 
  A compact soft and hard X-ray source via laser Compton scattering is required for biological, medical and industrial science because it has many benefits about generated X-rays such as short pulse, quasi-monochromatic, energy tunability and good directivity. Our X-ray source is conventionally the single collision system between an electron pulse and a laser pulse. To increase X-ray yield, we have developed a multi-collision system with a multi-bunch electron beam and a laser optical cavity. The multi-bunch beam will be generated from a Cs-Te photocathode rf gun sytem using a multi-pulse UV laser. The laser optical cavity will be built like the regenerative amplification including a collision point between the electron pulse and the laser pulse to enhance the laser peak power per 1 collision on laser Compton scattering. In this conference, we will describe the results of preliminary experiments for the multi-collision system and future plans.