A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Makarov, A. V.

Paper Title Page
MOPAS006 Design and Fabrication of a Multi-element Corrector Magnet for the Fermilab Booster Synchrotron 452
 
  • D. J. Harding, J. DiMarco, C. C. Drennan, V. S. Kashikhin, S. Kotelnikov, J. R. Lackey, A. V. Makarov, A. Makulski, R. Nehring, D. F. Orris, E. Prebys, P. Schlabach, G. Velev, D. G.C. Walbridge
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and installation at 48 locations is planned. The density of elements and the rapid slew rate have posed special challenges. The magnet construction is presented along with DC measurements of the magnetic field.

 
MOPAS016 New Corrector System for the Fermilab Booster 467
 
  • E. Prebys, C. C. Drennan, D. J. Harding, V. S. Kashikhin, J. R. Lackey, A. V. Makarov, W. Pellico
    Fermilab, Batavia, Illinois
 
  Funding: Work supported under DOE contract DE-AC02-76CH03000.

The Fermilab neutrino program places unprecedented demands on the lab's 8 GeV Booster synchrotron, which has not changed significantly since it was built almost 35 years ago. In particular, the existing corrector system is not adequate to control beam position and tune throughout the acceleration system, and provides limited compensation for higher order resonances. We present an ambitious ongoing project to build and install a set of 48 corrector packages, each containing horizontal and vertical dipoles, normal and skew quadrupoles, and normal and skew sextupoles. Space limitations in the machine have motivated a unique design, which utilizes custom wound coils around a 12 pole laminated core. Each of the 288 discrete multipole elements in the system will have a dedicated power supply, the output current of which is controlled by an individual programmable ramp. This provides for great flexibility in the system, but also presents a challenge in terms of designing the control hardware and software in such a way that the system can be operated in the most efficacious way.