A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Majeski, R. M.

Paper Title Page
TUZBAB01 Experiments on Transverse Bunch Compression on the Princeton Paul Trap Simulator Experiment 810
  • E. P. Gilson, M. Chung, R. C. Davidson, M. Dorf, P. Efthimion, R. M. Majeski, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy.

The Paul Trap Simulator Experiment is a compact laboratory Paul trap that simulates a long, thin charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system by putting the physicist in the beam's frame-of-reference. The transverse dynamics of particles in both systems are described by the same sets of equations, including all nonlinear space-charge effects. The time-dependent quadrupolar electric fields created by the confinement electrodes of a linear Paul trap correspond to the axially-dependent magnetic fields applied in the AG system. Results are presented from experiments in which the lattice period and strength are changed over the course of the experiment to transversely compress a beam with an initial depressed-tune of 0.9. Instantaneous and smooth changes are considered. Emphasis is placed on determining the conditions that minimize the emittance growth and the number of halo particles produced after the beam compression. The results of PIC simulations performed with the WARP code agree well with the experimental data. Initial results from a newly installed laser-induced fluorescence diagnostic will also be discussed.

slides icon Slides  
THPAS080 Initial Density Profile Measurements using a Laser-Induced Fluorescence Diagnostic in the Paul Trap Simulator Experiment 3666
  • M. Chung, R. C. Davidson, P. Efthimion, E. P. Gilson, R. M. Majeski
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy.

Installation of a laser-induced fluorescence (LIF) diagnostic system has been completed and initial measurement of the beam density profile has been performed on the Paul trap simulator experiment (PTSX). The PTSX device is a linear Paul trap that simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam propagating through a periodic focusing quadrupole magnetic configuration. Although there are several visible transition lines for the laser excitation of barium ions, the transition from the metastable state has been considered first mainly because an operating, stable, broadband, and high-power laser system is available for experiments in this region of the red spectrum. The LIF system is composed of a dye laser, fiber optic cables, a line generator, which uses a Powell lens, collection optics, and a CCD camera system. Single-pass mode operation of the PTSX device is employed for the initial tests of the LIF system to make optimum use of the metastable ions. By minimizing the background light level, it is expected that enough signal to noise ratio can be obtained to re-construct the radial density profile of the ion beam.