A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Loos, H.

Paper Title Page
TUOCAB02 Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane 807
 
  • P. Emma, K. L.F. Bane, Y. T. Ding, J. C. Frisch, Z. Huang, H. Loos, G. V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  • E. Prat
    DESY, Hamburg
  • F. Sannibale, K. G. Sonnad, M. S. Zolotorev
    LBNL, Berkeley, California
 
  Funding: U. S. Depertment of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through the first bunch compressor chicane was installed during the Fall of 2006. The first bunch compressor chicane is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. The degree of compression is highly adjustable using RF phasing and also chicane magnetic field variations. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression where coherent radiation effects are expected to be striking.

 
slides icon Slides  
TUPMS058 The LCLS Injector Drive Laser 1317
 
  • W. E. White, J. Castro, P. Emma, A. Gilevich, C. Limborg-Deprey, H. Loos, A. Miahnahri
    SLAC, Menlo Park, California
 
  Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.  
TUPMS049 Initial Commissioning Experience with the LCLS Injector 1302
 
  • P. Emma, R. Akre, J. Castro, Y. T. Ding, D. Dowell, J. C. Frisch, A. Gilevich, G. R. Hays, P. Hering, Z. Huang, R. H. Iverson, P. Krejcik, C. Limborg-Deprey, H. Loos, A. Miahnahri, C. H. Rivetta, M. E. Saleski, J. F. Schmerge, D. C. Schultz, J. L. Turner, J. J. Welch, W. E. White, J. Wu
    SLAC, Menlo Park, California
  • L. Froehlich, T. Limberg, E. Prat
    DESY, Hamburg
 
  Funding: U. S. Department of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor chicane, was installed during the Fall of 2006. Initial system commissioning with an electron beam takes place in the Spring and Summer of 2007. The second phase of construction, including the second bunch compressor and the FEL undulator, will begin later, in the Fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, energy spectrometers, S-band and X-band RF systems, the first bunch compressor stage, and the various beam diagnostics.

 
FRPMS071 Relative Bunch Length Monitor for the Linac Coherent Light Source (LCLS) using Coherent Edge Radiation 4189
 
  • H. Loos, T. Borden, P. Emma, J. C. Frisch, J. Wu
    SLAC, Menlo Park, California
 
  Funding: This work was supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC03-76SF00515

The ultra-short bunches of the electron beam for LCLS are generated in two 4-dipole bunch compressors located at energies of 250 MeV and 4.3 GeV. Although an absolute measurement of the bunch length can be done by using a transverse deflecting cavity in an interceptive mode, a non-interceptive single shot method is needed as a relative measurement of the bunch length used in the continuous feedback for beam energy and peak current. We report on the design and implementation of two monitors measuring the integrated power of coherent edge radiation from the last dipole in each chicane. The first monitor is installed in early 2007 and we compare its performance with the transverse cavity measurement and other techniques.