A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lombardi, A. M.

Paper Title Page
MOPAN077 Geometry of the LHC Short Straight Sections Before Installation in the Tunnel: Resulting Aperture, Axis and BPM Positioning 335
  • D. P. Missiaen, P. Bestmann, M. C.L. Buzio, S. D. Fartoukh, M. Giovannozzi, J. B. Jeanneret, A. M. Lombardi, Y. Papaphilippou, S. Pauletta, J. C. Perez, H. Prin, E. Y. Wildner
    CERN, Geneva
  The Large Hadron Collider Short Straight Sections (SSS) are currently being installed in their final position in the accelerator tunnel. For all the SSSs, both those in the regular arcs as well as those in the insertion regions, magnetic and geometric measurements are made at different steps of their assembly. These stages range from production in the industry to the cryostating at CERN, as well as during and after cold tests or during installation of the BPM and the cold warm transition for the stand alone magnets. The results of the geometry at the various production stages by means of different procedures and analysis tools are reported and discussed in details in this paper.  
FROAKI01 Magnet Acceptance and Allocation at the LHC Magnet Evaluation Board 3739
  • L. Bottura, P. Bestmann, N. Catalan-Lasheras, S. D. Fartoukh, S. S. Gilardoni, M. Giovannozzi, J. B. Jeanneret, M. Karppinen, A. M. Lombardi, K. H. Mess, D. P. Missiaen, M. Modena, R. Ostojic, Y. Papaphilippou, P. Pugnat, S. Ramberger, S. Sanfilippo, W. Scandale, F. Schmidt, N. Siegel, A. P. Siemko, D. Tommasini, T. Tortschanoff, E. Y. Wildner
    CERN, Geneva
  The normal- and superconducting magnets for the LHC ring have been carefully examined to insure that each of the more than 1800 assemblies is suitable for the operation in the accelerator. Magnet coordinators, hardware experts and accelerator physicists, joined in the LHC Magnet Evaluation Board, have contributed to this work that consists in the magnet acceptance, and the optimisation achieved by sorting magnets according to their geometry, field quality and quench level. This paper gives a description of the magnet approval mechanism that has been running since four years, reporting in a concise summary on the main results achieved. We take as specific indicators the computed mechanical aperture, the sorting efficiency with respect to systematic and random field errors in the magnets, and the case-by-case analysis necessary to accommodate hardware limitations such as quench limits and training.  
slides icon Slides