A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Limberg, T.

Paper Title Page
TUPMN020 Velocity Bunching at the European XFEL 959
  • T. Limberg, B. Beutner, W. Decking, M. Dohlus, K. Floettmann, M. Krasilnikov
    DESY, Hamburg
  This paper explores the possibility to employ velocity bunching in the first RF module of the European XFEL to increase the peak current at the injector exit. The current increase will reduce the total longitudinal bunch compression factor and loosen rf jitter tolerances by the same amount. The relation between rf tolerances and micro-bunching instability gain is discussed and the injector optimization for cases of velocity bunching to 100A and 200A peak current are presented in detail. Finally, plans for velocity bunching experiments at the FLASH facility (Free Electron Laser in Hamburg) are laid out.  
TUPMS049 Initial Commissioning Experience with the LCLS Injector 1302
  • P. Emma, R. Akre, J. Castro, Y. T. Ding, D. Dowell, J. C. Frisch, A. Gilevich, G. R. Hays, P. Hering, Z. Huang, R. H. Iverson, P. Krejcik, C. Limborg-Deprey, H. Loos, A. Miahnahri, C. H. Rivetta, M. E. Saleski, J. F. Schmerge, D. C. Schultz, J. L. Turner, J. J. Welch, W. E. White, J. Wu
    SLAC, Menlo Park, California
  • L. Froehlich, T. Limberg, E. Prat
    DESY, Hamburg
  Funding: U. S. Department of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor chicane, was installed during the Fall of 2006. Initial system commissioning with an electron beam takes place in the Spring and Summer of 2007. The second phase of construction, including the second bunch compressor and the FEL undulator, will begin later, in the Fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, energy spectrometers, S-band and X-band RF systems, the first bunch compressor stage, and the various beam diagnostics.

THPAN026 Beam Profile Measurements and Analysis at FLASH 3283
  • E. Prat, W. Decking, T. Limberg, F. Loehl
    DESY, Hamburg
  • K. Honkavaara
    Uni HH, Hamburg
  FLASH (Free Electron LASer in Hamburg) is a SASE FEL user facility at DESY, Hamburg. It serves also as a pilot project for the European XFEL. Although the slice emittance is a more appropriate parameter to characterize the SASE process, the projected emittance is a good indicator of the electron beam quality which can be measured in an easy and fast way. In this paper we present measurements of the projected emittance along FLASH. We also analyze the effect of the dispersion on transverse electron beam profiles.