A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lebrun, P.

Paper Title Page
THPMN104 Recent Studies of Dispersion Matched Steering for the ILC Bunch Compressor and Main Linac 2954
 
  • P. Lebrun, L. Michelotti, J.-F. Ostiguy
    Fermilab, Batavia, Illinois
 
  Beam Based Alignment techniques are expected to play a critical role to the emittance preservation for the ILC. The Dispersion Free Steering (DFS) method is studied in detail in the 2nd statge of the bunch Compressor and in the beginning of the curved Main Linac. It is shown than in absence of cavity tilts (rotations on the YZ plane), DMS provides a unique and stable solution with negligible emittance growth. If cavity tilts are about 200 to 300 micro-radiant, the DMS solution is no longer unique and significant emittance occurs as well. While within the ILC budget, other dynamical effects, such a large beam jitter or sudden ground motion will cause severe performance degradation. A Variant of the DFS algorithm can be used to re-aling cavity supports, leading to better LET performance. In presence of perturbations (klystron jitter, ground motion,.. ) such DFS solutions are easier to maintain and improved if they are stable and unique. Therefore, it is suggested to consider using movers on quadrupole/BPM and, a bit more controversial, for the support system of the r.f. cavities, especially at low energy, where spurious dispersion due to cavity tilts are large.  
THPMS013 Comparison of Tracking Codes for the International Linear Collider 3020
 
  • J. C. Smith
    CLASSE, Ithaca
  • P. Eliasson
    Uppsala University, Uppsala
  • K. Kubo
    KEK, Ibaraki
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Lebrun, K. Ranjan
    Fermilab, Batavia, Illinois
  • F. Poirier, N. J. Walker
    DESY, Hamburg
  • P. Tenenbaum
    SLAC, Menlo Park, California
 
  Funding: Supported by the US Department of Energy, the US National Science Foundation and the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area".

In an effort to compare beam dynamics and create a ‘‘benchmark'' for Dispersion Free Steering (DFS) a comparison was made between different International Linear Collider (ILC) simulation programs while performing DFS. This study consisted of three parts. First, a simple betatron oscillation was tracked through each code. Secondly, a set of component misalignments and corrector settings generated from one program was read into the other to confirm similar emittance dilution. Thirdly, given the same set of component misalignments DFS was performed independently in each program and the resulting emittance dilution was compared. Performance was found to agree exceptionally well in all three studies.