A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Krinsky, S.

Paper Title Page
MOOAAB01 Philosophy for NSLS II Design with Sub-nanometer Horizontal Emittance 77
 
  • S. Ozaki, J. Bengtsson, S. L. Kramer, S. Krinsky, V. Litvinenko
    BNL, Upton, Long Island, New York
 
  In this paper we present design philosophy for reliable light sources with sub-nm horizontal emittance used for conceptual design of NSLS II. We discuss the fundamentals of the concept, such as using reliable achromatic low-emittance lattice with large bending radius and damping wigglers with modest peak field. We also discuss a natural scale of the emittance set by intra-beam scattering and its influence of the choice of the bending radius for the ring. In addition, we review a very weak dependence of the beam lifetime on the emittance, and present a clear physics explanation of the phenomena. Finally, we list main parameters of the 3 GeV NSLS II X-ray ring.  
slides icon Slides  
TUPMS072 Longitudinal Beam Parameter Tolerances of NSLS II 1338
 
  • W. Guo, G. L. Carr, S. Krinsky, J. Rose
    BNL, Upton, Long Island, New York
 
  Funding: National Synchrotron Light Source II

A notable feature of the proposed National Synchrotron Light Source II is that the vertical emittance is close to the diffraction limit of 1 Angstrom. With such a small emittance, the brightness is strongly affected by the longitudinal parameters, such as the momentum spread. Various effects are discussed and tolerances on the longitudinal parameters will be given. The lower level RF feedback system will be designed based on these tolerances.

 
TUPMS073 Dispersion Tolerance Calculation for NSLS-II 1341
 
  • W. Guo, S. Krinsky, F. Lin
    BNL, Upton, Long Island, New York
 
  The approach for the proposed National Synchrotron Light Source II to reach small transverse emittances is to deploy damping wigglers. In the ideal lattice the dispersion is zero in the straight sections, therefore the damping wigglers supply only damping effect. In reality the residual dispersion can be generated by the lattice errors, trim dipoles, and the insertion devices. We will discuss dispersion introduced by different sources and calculate the tolerances. Possible correction schemes will also be presented.  
TUPMS074 Collective Effects in the NSLS-II Storage Ring 1344
 
  • S. Krinsky, J. Bengtsson, J. S. Berg, M. Blaskiewicz, A. Blednykh, W. Guo, N. Malitsky, C. Montag, B. Podobedov, J. Rose, N. A. Towne, L.-H. Yu
    BNL, Upton, Long Island, New York
  • F. Wang
    MIT, Middleton, Massachusetts
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.

A new high-brightness synchrotron light source (NSLS-II) is under design at BNL. The 3-GeV NSLS-II storage ring has a double-bend achromatic lattice with damping wigglers installed in zero-dispersion straights to reduce the emittance below 1nm. In this note, we present an overview of the impact of collective effects upon the performance of the storage ring. Subjects discussed include Touschek lifetime, intra-beam scattering, instability thresholds due to ring impedance, and use of a third-harmonic Landau cavity.

 
FRPMS102 Preliminary Impedance Budget for the NSLS-II Storage Ring 4321
 
  • A. Blednykh, S. Krinsky
    BNL, Upton, Long Island, New York
 
  Extensive calculations have been performed of the wakefield and impedance produced by the storage ring components for the rms bunch length of 3mm. Calculated data are presented for the NSLS-II storage ring components such as dipole vacuum chamber, quadrupole vacuum chamber, sextupole vacuum chamber, tapered elliptic vacuum chamber for superconducting undulator, cryo permanent magnet mini-gap undulator, CESR-B RF cavity, beam position monitor, infrared beam extraction chamber and resistive wall. The loss factor, the kick factor and imaginary part of the longitudinal impedance at low frequency divided by harmonic number are given per component and have been entered into a table.  
FRPMS103 Coupling Impedance of the CESR-B RF Cavities for the NSLS-II Storage Ring 4327
 
  • A. Blednykh, S. Krinsky, J. Rose
    BNL, Upton, Long Island, New York
 
  CESR-B type superconducting cavities are under discussion for acceleration of the electron beam in the 3-GeV NSLS-II storage ring. In this paper we present a detailed investigation of longitudinal and transverse impedances of the cavity and transition assembly. Ferrite material is included in impedance analysis. Its effect on the short range wakepotential has been studied using the GdfidL code. Results of loss factors and kick factors are presented for a 3mm rms bunch length.  
FRPMS104 Impedance of Electron Beam Vacuum Chambers for the NSLS-II Storage Ring 4333
 
  • A. Blednykh, S. Krinsky
    BNL, Upton, Long Island, New York
 
  In this paper we discuss computation of the coupling impedance of the vacuum chambers for the NSLS-II storage ring using the electromagnetic simulator GdfidL. The impedance of the vacuum chambers depends on the geometric dimensions of the cross-section and height of the slot in the chamber wall. Of particular concern is the complex geometry of the infrared extraction chambers to be installed in special large-gap dipole magnets. In this case, wakefields are generated due to tapered transitions and large vertical-aperture ports with mirrors near the electron beam.