A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Krejcik, P.

Paper Title Page
WEPMS036 LCLS LLRF Upgrades to the SLAC Linac 2421
  • R. Akre, D. Dowell, P. Emma, J. C. Frisch, B. Hong, K. D. Kotturi, P. Krejcik, J. Wu
    SLAC, Menlo Park, California
  • J. M. Byrd
    LBNL, Berkeley, California
  Funding: DOE

The Linac Coherent Light Source at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 100fS length electron bunch is passed through an undulator. To creat the 100fS bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 100fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

THXC02 Diagnostics for Commissioning LCLS 2635
  • P. Krejcik
    SLAC, Menlo Park, California
  The fist stage of commissioning of the Linac Coherent Light Source at SLAC has begun in April of this year with succesful transport of the beam from the new RF photoinjector throught to the first bunch compressor. Construction and installation is continuing and will culminate with first FEL light in 2009. The LCLS provides several diagnostic challenges for providing precision, single-pulse readback of beam size and position in order to tune for very low 1 micron emittances. Ultra-short subpicosecond bunches call for special techniques of bunch length measurement including coherent radiation monitoring and the transverse deflecting cavity. The latter is also used to measure time dependant emittance and energy spread of slices along the bunch, which are critical to the lasing process within the FEL.  
slides icon Slides  
TUPMS049 Initial Commissioning Experience with the LCLS Injector 1302
  • P. Emma, R. Akre, J. Castro, Y. T. Ding, D. Dowell, J. C. Frisch, A. Gilevich, G. R. Hays, P. Hering, Z. Huang, R. H. Iverson, P. Krejcik, C. Limborg-Deprey, H. Loos, A. Miahnahri, C. H. Rivetta, M. E. Saleski, J. F. Schmerge, D. C. Schultz, J. L. Turner, J. J. Welch, W. E. White, J. Wu
    SLAC, Menlo Park, California
  • L. Froehlich, T. Limberg, E. Prat
    DESY, Hamburg
  Funding: U. S. Department of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor chicane, was installed during the Fall of 2006. Initial system commissioning with an electron beam takes place in the Spring and Summer of 2007. The second phase of construction, including the second bunch compressor and the FEL undulator, will begin later, in the Fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, energy spectrometers, S-band and X-band RF systems, the first bunch compressor stage, and the various beam diagnostics.