A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kolomensky, Yu. G.

Paper Title Page
FRPMS049 Resolution of a High Performance Cavity Beam Position Monitor System 4090
 
  • S. Walston, C. C. Chung, P. Fitsos, J. Gronberg
    LLNL, Livermore, California
  • S. T. Boogert
    Royal Holloway, University of London, Surrey
  • J. C. Frisch, S. Hinton, J. May, D. J. McCormick, S. Smith, T. J. Smith, G. R. White
    SLAC, Menlo Park, California
  • H. Hayano, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Yu. G. Kolomensky, T. Orimoto
    UCB, Berkeley, California
  • P. Loscutoff
    LBNL, Berkeley, California
  • A. Lyapin, S. Malton, D. J. Miller
    UCL, London
  • R. Meller
    Cornell University, Department of Physics, Ithaca, New York
  • M. C. Ross
    Fermilab, Batavia, Illinois
  • M. Slater, M. Thomson, D. R. Ward
    University of Cambridge, Cambridge
  • V. Vogel
    DESY, Hamburg
 
  International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved – ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of ± 20 microns.  
FRPMN090 A Prototype Energy Spectrometer for the ILC at End Station A in SLAC 4285
 
  • A. Lyapin, F. Gournaris, B. Maiheu, D. J. Miller, M. Wing
    UCL, London
  • C. Adolphsen, R. Arnold, C. Hast, D. J. McCormick, Z. M. Szalata, M. Woods
    SLAC, Menlo Park, California
  • S. T. Boogert, G. E. Boorman
    Royal Holloway, University of London, Surrey
  • M. V. Chistiakova, Yu. G. Kolomensky, E. Petigura, M. Sadre-Bazzaz
    UCB, Berkeley, California
  • V. N. Duginov, S. A. Kostromin, N. A. Morozov
    JINR, Dubna, Moscow Region
  • M. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • H. J. Schreiber, M. Viti
    DESY Zeuthen, Zeuthen
  • M. Slater, M. Thomson, D. R. Ward
    University of Cambridge, Cambridge
 
  The main physics programme of the international linear collider requires a measurement of the beam energy with a relative precision on the order of 10-4 or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPM) has been proposed. A prototype spectrometer chicane using 4 dipole magnets is currently under development at the End Station A in SLAC, intending to demonstrate the required stability of this method and investigate possible systematic effects and operational issues. This contribution reports on the successful commissioning of the beam position monitor system and the resolution and stability achieved. Also, the initial results from a run with a full spectrometer chicane are presented.