A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kinkead, A. K.

Paper Title Page
THPMS075 High Power Testing of a Fused Quartz-based Dielectric-loaded Accelerating Structure 3157
 
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • V. A. Dolgashev, S. G. Tantawi
    SLAC, Menlo Park, California
  • W. Gai, R. Konecny, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • S. H. Gold
    NRL, Washington, DC
  • A. K. Kinkead
    LET
 
  We report on the most recent results from a series of high power tests being carried out on RF-driven dielectric-loaded accelerating (DLA) structures. The purpose of these tests is to determine the viability of the DLA as a traveling-wave accelerator and is a collaborative effort between Argonne National Laboratory (ANL), Naval Research Laboratory (NRL), and Stanford Linear Accelerator Center (SLAC). In this paper, we report on the recent high power tests of a fused quartz-based DLA structure that was carried out at incident powers of up to 12 MW at NRL and 37 MW at SLAC. We report experimental details of the RF conditioning process and make comparison of our multipactor model to the experiment, including tests of geometrical scaling laws and the time evolution of multipactor. Finally, we discuss future plans for the program including a planned test of new quartz-based DLA with a different geometry to both reach higher accelerating gradients and to continue the parametric study of multipactor.  
THPMS096 Development of a Dielectric-Loaded Test Accelerator 3211
 
  • S. H. Gold
    NRL, Washington, DC
  • W. Gai, R. Konecny, J. Long, J. G. Power
    ANL, Argonne, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • A. K. Kinkead
    LET
  • C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
 
  Funding: Work supported by DoE and ONR.

A joint project is underway by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a compact X-band accelerator for testing dielectric-loaded accelerator (DLA) structures.* The accelerator will use a 5-MeV injector previously developed by the Tsinghua University in Beijing, China, and will accommodate test structures up to 0.5 m in length. Both the injector and the structures will be powered by an 11.4-GHz magnicon amplifier that can produce 25 MW, 200-ns output pulses at up to 10 Hz. The injector will require ~5 MW of rf power, leaving ~20 MW to power the test structures. This paper will present a progress report on the construction and commissioning of the test accelerator, which will be located in a concrete bunker in the Magnicon Facility at NRL.

* S. H. Gold et al., Proc. PAC 2005.