A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Katayama, T.

Paper Title Page
THPAN048 Numerical Solver with CIP Method for Fokker Planck Equation of Stochastic Cooling 3336
 
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • T. Katayama
    CNS, Saitama
 
  A Fokker Planck equation for a Stochastic cooling* is solved by using the CIP method**. The Fokker Planck equation can be described in a convection-diffusion equation as a function of time and energy. The equation is a non linear form and the evolution of the distribution function should be numerically solved. The CIP method, which is an effective scheme to solve the convection term numerically, is applied to the Fokker Planck equation of the Stochastic cooling. By using the CIP method for the numerical solver, we can effectively calculate the time-dependent Fokker Planck equation in more few computational costs. The developed numerical solver can give us the energy spectrum of the particle distribution during the beam cooling. The simulation results show the good agreements compared with the experimental results.

* S. Van der Meer, CERN/PS/AA/78-22, 1978.** T. Yabe and T. Aoki, Comp. Phys. Commun. 66 (1991) 219.