A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Huang, S.

Paper Title Page
THPAS038 Compensation of the Beam Dynamics Effects Caused by the Extraction Lambertson Septum of the HIGS Booster 3582
 
  • J. Li, S. Huang, S. F. Mikhailov, V. Popov, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
 
  Funding: Supported by US DoE grant #DE-FG02-01ER41175

As part of the High Intensity Gamma-Ray Source (HIGS) upgrade, the booster synchrotron has been recently commissioned. The booster ramps the electron beam between 0.27 and 1.2 GeV for top-off injection into the Duke storage ring. It has symmetrical injection/extraction schemes with a bumped orbit. The injection/extraction kickers and corresponding septa are located in the opposite straight sections of the booster ring separated by about 1/4 of the vertical betatron wave. Due to the nonideal properties of the magnetic material, the magnetic field leaks out into the stored beam chamber, which directly results in orbit distortion, tune and chromaticity shifts and change of coupling. These effects caused by the extraction septum have been measured as a function of extraction energy. Based upon the measurements, we have developed a scheme to compensate the dynamics effects mentioned above.

 
FRPMS041 A Direct Electron Beam Energy Spread Measurement System for Beam Instability and FEL Research 4045
 
  • S. Huang, S. Huang
    PKU/IHIP, Beijing
  • J. Li, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
 
  Funding: Supported by US AFOSR MFEL grant #FA9550-04-01-0086.

One of critical beam parameters for the storage ring based light sources is the energy spread of the electron beam. An accurate measurement of the energy spread remains a challenge. It is well known that the electrons with different energies can degrade the spontaneous emission spectrum of a two-wiggler system in an optical-klystron configuration. The reduced modulation in the spectrum can be used to determine the energy spread of the beam. This paper describes our newly developed energy spread measurement system employing a scanning spectrometer and a fast CCD. A fast CCD with a burst mode of operation is used so that dynamical changes of the energy spread from tens of microseconds to tens of milliseconds can be measured. This system will be used in the beam instability research and free-electron laser research. Together with compact wigglers, such a system can be developed as a dedicated beam diagnostic for storage rings and linacs.

 
FRPMS041 A Direct Electron Beam Energy Spread Measurement System for Beam Instability and FEL Research 4045
 
  • S. Huang, S. Huang
    PKU/IHIP, Beijing
  • J. Li, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
 
  Funding: Supported by US AFOSR MFEL grant #FA9550-04-01-0086.

One of critical beam parameters for the storage ring based light sources is the energy spread of the electron beam. An accurate measurement of the energy spread remains a challenge. It is well known that the electrons with different energies can degrade the spontaneous emission spectrum of a two-wiggler system in an optical-klystron configuration. The reduced modulation in the spectrum can be used to determine the energy spread of the beam. This paper describes our newly developed energy spread measurement system employing a scanning spectrometer and a fast CCD. A fast CCD with a burst mode of operation is used so that dynamical changes of the energy spread from tens of microseconds to tens of milliseconds can be measured. This system will be used in the beam instability research and free-electron laser research. Together with compact wigglers, such a system can be developed as a dedicated beam diagnostic for storage rings and linacs.