A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hernandez, J.

Paper Title Page
MOPAS045 Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications 533
  • M. Shverdin, S. G. Anderson, C. P.J. Barty, M. Betts, D. J. Gibson, F. V. Hartemann, J. Hernandez, M. Johnson, I. Jovanovic, D. P. McNabb, M. J. Messerly, J. A. Pruet, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7504-Eng-48.

The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps FWHM and rise and fall times under 1 ps. The pulse energy is 100 micro-joules at 261.75 nm and the spot size diameter of the beam at the photocathode measures 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. A custom-designed diffractive optic reshapes the input pulse to a flat-top. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. The integration of the system, as well as preliminary electron beam measurements will be discussed.

TUPMS031 High-energy Picosecond Laser Pulse Recirculation for Compton Scattering 1251
  • I. Jovanovic, S. G. Anderson, C. P.J. Barty, C. G. Brown, D. J. Gibson, F. V. Hartemann, J. Hernandez, M. Johnson, D. P. McNabb, M. J. Messerly, J. A. Pruet, M. Shverdin, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Frequency upconversion of laser-generated photons by inverse Compton scattering for applications such as nuclear spectroscopy and gamma-gamma collider concepts on the future ILC would benefit from an increase of average source brightness. The primary obstacle to higher average brightness is the relatively small Thomson scattering cross section. It has been proposed that this limitation can be partially overcome by use of laser pulse recirculation. The traditional approach to laser recirculation entails resonant coupling of low-energy pulse train to a cavity through a partially reflective mirror.* Here we present an alternative, passive approach that is akin to "burst-mode" operation and does not require interferometeric alignment accuracy. Injection of a short and energetic laser pulse is achieved by placing a thin frequency converter, such as a nonlinear optical crystal, into the cavity in the path of the incident laser pulse. This method leads to the increase of x-ray/gamma-ray energy proportional to the increase in photon energy in frequency conversion. Furthermore, frequency tunability can be achieved by utilizing parametric amplifier in place of the frequency converter.

* G. Klemz, K. Monig, and I. Will, "Design study of an optical cavity for a future photon-collider at ILC", Nucl. Instrum. Meth. A 564, 212-224 (2006).