A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hauge, N.

Paper Title Page
TUPMN007 Final Commissioning Results from the Injection System for the Australian Synchrotron Project 926
 
  • S. V. Weber, F. Bødker, H. Bach, N. Hauge, J. Kristensen, L. K. Kruse, S. P. M?ller, S. M. Madsen
    Danfysik A/S, Jyllinge
  • M. J. Boland, R. T. Dowd, G. LeBlanc, M. J. Spencer, Y. E. Tan
    ASP, Clayton, Victoria
  • N. H. Hertel, J. S. Nielsen
    ISA, Aarhus
 
  Danfysik has delivered a full-energy turn-key injection system for the Australian Synchrotron. The system consists of a 100 MeV linac, a low-energy transfer beamline, a 130 m circumference 3-GeV booster, and a high energy transfer beamline. The booster lattice was designed to have many cells with combined-function magnets (dipole, quadrupole and sextupole fields) in order to reach a very small emittance. The injection system has been commissioned and found to deliver a beam with an emittance of less than 30 nm, and currents in single- and multi-bunch mode in excess of 0.5 and 5 mA, respectively, fulfilling the contractual performance specifications. The repetition frequency is 1 Hz. Results from the commissioning of the system will be presented.  
TUPAN004 Slow Kicker Magnet System with Energy Recover Pulse Power Supply with Extended Flat Top 1395
 
  • P. A. Elkiaer, C. E. Hansen, N. Hauge, C. Nielsen, E. Steinmann
    Danfysik A/S, Jyllinge
  • S. L. Birch, E. P. Quinn, S. P. Stoneham
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • A. Morris
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Danfysik has developed a novel Slow Kicker Magnet Power Supply ERMPPS with associated magnet achieving high stability, long flatness top and low energy consumption. Two Slow Kicker Magnet Systems has been built to RAL, one low and one high energy supply. The magnets are laminated window frame type. The RAL synchrotron produces high energy protons at 50 Hz rate. The Slow Kickers operate at 10 Hz, directing a portion of the extracted protons to a second beam line. The flat top width is 600 μs with a flat top and peak-peak stability better than 100 ppm. The rise and fall time is 12 msec. The power supply has been developed with following highlights: High accuracy with adjustable output current, wide range micro-step set able flattop and rise time width, energy recovery, digital flattop and rise time regulation loop in FPGA and variable repetition frequency down to one shoot operation. The flat top- and rise time width settings are bounded by the actual load and internal component values. The paper describes power supply topology, the digital regulation principia and the magnet construction. Performance measurements electrical as well as magnetic measurements are presented.  
THPMN004 A Synchrotron Based Particle Therapy Accelerator 2713
 
  • S. P. M?ller, T. Andersen, F. Bødker, A. Baurichter, P. A. Elkiaer, C. E. Hansen, N. Hauge, T. Holst, I. Jensen, L. K. Kruse, S. M. Madsen, M. Sager, S. V. Weber
    Danfysik A/S, Jyllinge
  • K. Blasche
    BTE Heidelberg, Ingeniurburo, Schriesheim
  • B. J. Franczak
    GSI, Darmstadt
 
  Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The accelerators will consist of an injector (7 MeV/u proton and light ions), a compact and simple synchrotron and a choice of fixed-angle horizontal and semi-vertical beamlines together with gantry systems. The optimized lattice configuration, including the design of injection and extraction systems, provides large transverse phase space acceptance with minimum magnet apertures. The resulting synchrotron will have light magnets, low values of peak power for pulsed operation and minimum dc power consumption. The beam can be accelerated to the maximum magnetic rigidity of 6.6 Tm in less than 1 s. A beam of 48-250 MeV protons and 88-430 MeV/u carbon ions can be slowly extracted during up to 10s. The intensity for protons and carbon ions will be well beyond the needs of scanning beam applications. The design and performance specs of the synchrotron will be described in detail including simulations. Design and manufacture of the subsystems are in progress. *Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use.